Skip to main content
Log in

Visualization of the Unified Strength Theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The Unified Strength Theory (UST) provides the fundamentals for the systematic study of various strength hypotheses and yields criteria for isotropic materials. It shows relationship between known models (Mohr-Coulomb, Pisarenko-Lebedev, Twin-Shear Theory of Yu), and apart from these known models, this model contains also classical models like the normal stress hypothesis, von Mises, Tresca and Schmidt-Ishlinsky. The UST can be adapted for different types of materials. Thus, it is a suitable tool for the analysis of experimental data.

For the UST, the inelastic Poisson’s ratio and the maximum hydrostatic tension stress will be computed as a function of model parameters which simplifies the comparison with another model. The correlations between uniaxial, biaxial and hydrostatic stress will be illustrated and compared with classical models. For all classical models and for the UST, the uniaxial and biaxial tension failure stress and also the uniaxial and biaxial compression failure stress are equal. In this sense, the UST can be classified as a classical model.

The failure behavior of new materials like some polymers and alloys differs from the classical one. The UST can be extended to such failure behavior. For this purpose, the Unified Yield Criterion (UYC) as part of the UST will be modified so that all known criteria of incompressible material behavior can be approximated.

With the help of a simple substitution, the UYC can be further developed for compressible material behavior. Different convex lines can be adjust for the form of the meridian. With this substitution, the hydrostatic tension stress will be restricted with one of the parameters. Furthermore, the model can be applied for the description of failure behavior of ceramics, hard foams and sintered materials. For this application, both the hydrostatic tension and compression stress will be restricted too. Some reference values for hydrostatic loading are established.

For the visual comparison of different parameter setting of the models, graphical methods can be used. The UST will be represented in the principal stress space. Further considerations will be carried out in the Burzyński-plane and in the π-plane. For engineering applications, the Burzyński-plane is preferred to the meridional cut. For better analysis and a direct comparison of fitted models to the experimental values, the line of the plane stress state will be shown in the Burzyński-plane and in the π-plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Φ:

Model of isotropic material behavior

I 1 :

First invariant of the stress tensors

I 2′, I 3′:

Second and third invariants of the stress deviator

θ :

Stress angle

σeq :

Equivalent stresses

σ+, σ :

Limits of the uniaxial stress states (tension and compression)

τ*, σBZ, σBD, σIZ, σUD :

Limits of the biaxial stress states

σAZ, σAD :

Limits of the hydrostatic stress states

σI, σII, σIII :

Principal stresses

\({\dot\lambda}\) :

Lagrange multiplier

σ ijk :

Stress gradient

R :

Structural parameter

dkb Zb Di Zu D :

Relations for the loading points of the plane stress state

\({a_{\rm +}^{\rm hyd},\,a_{\rm -}^{\rm hyd}}\) :

Relations for the loading points of the hydrostatic stress state

\({\nu_+^{\rm in},\,\nu_-^{\rm in}}\) :

Inelastic Poisson’s ratio at tension and compression

\({\xi_1,\,\xi_2,\,\xi_3}\) :

Cartesian co-ordinates

jlm :

Powers of the terms in the compressible substitution

bd :

Parameters of the UST

ψ :

Inclination of the meridian with respect to the hydrostatic axis

ZB D :

Points of the meridian θ = 0: tension and balanced biaxial compression

DB Z :

Points of the meridian θ = 60: compression and balanced biaxial tension

KI ZU D :

Points of the meridian θ = 30: torsion, thin-walled tube specimen with closed ends under inner and outer pressure

A ZA D :

Points of hydrostatic tension and compression

π-plane:

Cut of the surface Φ orthogonal to the hydrostatic axis

ΦHay :

Model of Haythornthwaite

ΦSay :

Model of Sayir II

BCM:

Bicubic model Φ6

GMM:

Geometric–mechanical model

MC:

Model of Mohr–Coulomb

NSH:

Normal stress hypothesis

SI:

Model of Schmidt-Ishlinsky

SST:

Single stress theory of Yu or MC

TST:

Twin stress theory of Yu

UYC:

Unified yield criterion of Yu

UST:

Unified strength theory of Yu

References

  1. Altenbach H., Altenbach J., Zolochevsky A.: Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart (1995)

    Google Scholar 

  2. Altenbach, H., Kolupaev, V.A.: Fundamental forms of strength hypotheses. In: Indeitcev D.A., Krivtcov A.M. (eds.) Proceedings of XXXVI Summer School “Advanced Problems in Mechanics”, Proceedings, pp. 32–45. Institute for Problems in Mechanical Engineering RAS, St.Petersburg/Repino, June 30–July 5 (2009)

  3. Altenbach H.: Strength hypotheses: a never ending story. Czasopismo Techniczne (Technical Transactions) Politechniki Krakowkiej 107(20), 5–15 (2010)

    Google Scholar 

  4. Altenbach H.: Mechanics of advanced materials for lightweight structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225(11), 2481–2496 (2011)

    Article  Google Scholar 

  5. Altenbach H., Bolchoun A., Kolupaev V.A.: Phenomenological yield and failure criteria. In: Altenbach, H., Öchsner, A. Plasticity of Pressure-Sensitive Materials, Springer, Berlin (2012)

  6. Backhaus G.: Deformationsgesetze. Akademie-Verlag, Berlin (1983)

    Google Scholar 

  7. Balandin P.P.: K voprosu o gipotezach prochnosti. Vestnik inzhenerov i technikov 1, 19–24 (1937)

    Google Scholar 

  8. Bardenheier R.: Mechanisches Versagen von Polymerwerkstoffen: Anstrengungsbewertung mehrachsialer Spannungszustände. Hanser-Verlag, München (1982)

    Google Scholar 

  9. Beljaev N.M.: Strength of Materials. Mir Publ., Moscow (1979)

    Google Scholar 

  10. Beltrami E.: Sulle condizioni di resistenza dei corpi elastici. Rend. Ist. Lomb. Sci. Lett. C1. Mat. Nat. 18, 704–714 (1885)

    MATH  Google Scholar 

  11. Betten J.: Kontinuumsmechanik. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  12. Betten J.: Creep Mechanics. Springer, Berlin (2008)

    Google Scholar 

  13. Billington E.W.: Introduction to the Mechanics and Physics of Solids. Adam Hilger Ltd., Bristol (1986)

    MATH  Google Scholar 

  14. Bolchoun A., Kolupaev V.A., Altenbach H.: Convex and non-convex flow surfaces (in German). Forschung im Ingenieurwesen 75(2), 73–92 (2011)

    Article  Google Scholar 

  15. Burzyński W.: Studjum nad hipotezami wyteżenia. Akademia Nauk Technicznych., Lwów (1928)

    Google Scholar 

  16. W. , W. : Über die Anstrengungshypothesen. Schweizerische Bauzeitung 94(21), 259–262 (1929)

    Google Scholar 

  17. Burzyński, W.: Selected passages from Włodzimierz Burzyński’s doctoral dissertation “Study on material effort hypotheses” printed in Polish by the Academy of Technical Sciences, Lwów, 1928, 1–192. Engineering Transactions, Polish Academy of Sciences, Warsaw, 57, pp. 3–4, pp. 127–157 (2009)

  18. Cardarelli F.: Materials Handbook: A Concise Desktop Reference. Springer, London (2008)

    Google Scholar 

  19. Chen W.F., Saleeb A.F.: Elasticity and Modeling. Elsevier, Amsterdam (1982)

    MATH  Google Scholar 

  20. Chen W.F., Han D.J.: Plasticity for Structural Engineers. Springer, New York (2007)

    Google Scholar 

  21. Chen W.F., Zhang H.: Structural Plasticity—Theory, Problems, and CAE Software. Springer, New York (1991)

    Google Scholar 

  22. Drucker D.C.: Relation of experiments to mathematical theories of plasticity. J. Appl. Mech. 16, 349–357 (1949)

    MathSciNet  MATH  Google Scholar 

  23. Drucker D.C., Prager W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10, 157–165 (1952)

    MathSciNet  MATH  Google Scholar 

  24. Feodosiev V.I.: Ten Lectures-Discussions of the Strength Theory (in Russian). Verlag Nauka, Moskau (1975)

    Google Scholar 

  25. Gollub W.: Grenzen und Möglichkeiten der Mohr-Coulombschen Bruchbedingung. Diss., VDI-Verl., Reihe 18: Mechanik/Bruchmechanik, Nr. 68, Düsseldorf (1989)

    Google Scholar 

  26. Haigh B.P.: The strain-energy function and the elastic limit. Engineering 30, 158–160 (1920)

    Google Scholar 

  27. Hayhurst D.R.: Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids 20(6), 381–390 (1972)

    Article  Google Scholar 

  28. Haythornthwaite, R.M.: Mechanics of triaxial tests for soil. J. Soil Mech. Found. Div. Proc. ASCE SM5, 35–62 (1960)

    Google Scholar 

  29. Hencky, H.: Ermüdung, Bruch, Plastizität. Stahlbau, 16, pp. 95–97, Heft 23/24 (1943)

  30. Ishlinsky A.Yu.: Hypothesis of Strength of Shape Change (in Russian). Uchebnye Zapiski Moskovskogo Universiteta Mekhanika 46, 104–114 (1940)

    Google Scholar 

  31. Ishlinsky A.Yu., Ivlev D.D.: Mathematical theory of plasticity (in Russian). Fizmatlit, Moskau (2003)

    Google Scholar 

  32. Ismar H., Mahrenholtz O.: Über Beanspruchungshypothesen für metallische Werkstoffe. Konstruktion 34, 305–310 (1982)

    Google Scholar 

  33. Issler L., Ruoß H., Häfele P.: Festigkeitslehre—Grundlagen. Springer, Berlin (2006)

    Google Scholar 

  34. Ivlev D.D.: Teorija idealnoj plastichnisti (in Russian). Nauka, Moskau (1966)

    Google Scholar 

  35. Kłębowski, Z.: Energetyczne hipotezy wytężenia, a możność opracowania ogólnej teoriiwytężenia. Księga jubileuszowa dla uczczenia zasługnaukowych prof. dr inż. M. T. Hubera z okazji 50—lecia pracynaukowej, pp. 165–179 (1950)

  36. Kolupaev V.A.: 3D-creep behaviour of parts made of non-reinforced thermoplastics (in German). Diss., Papierflieger Verlag, Clausthal-Zellerfeld (2006)

    Google Scholar 

  37. Kolupaev V.A., Bolchoun A.: Combined Yield and Fracture Criteria (in German). Forschung im Ingenieurwesen 72, 209–232 (2008)

    Article  Google Scholar 

  38. Kolupaev, V.A., Bolchoun, A., Altenbach, H.: New trends in application of strength hypotheses (in German). Konstruktion, pp. 59-66 (2009)

  39. Kolupaev, V.A., Altenbach, H.: Application of the generalized model of Yu to Plastics. In: Grellmann, W., Hrsg. (Eds.) 12. Tagung Deformations- und Bruchverhalten von Kunststoffen, pp. 320–339. Martin-Luther-Universität Merseburg (2009)

  40. Kolupaev V.A., Altenbach H.: Considerations on the unified strength theory due to Mao-Hong Yu (in German). Forschung im Ingenieurwesen 74(3), 135–166 (2010)

    Article  Google Scholar 

  41. Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Strength hypotheses for hard polymeric foams. In: Radusch, H.-J., Fiedler, L. (eds.) 14 International Scientific Conference on Polymeric Materials P.2010, 27 p. Halle (Saale), 15–17 September 2010 (2010)

  42. Kolupaev, V.A., Mohr-Matuschek, U., Altenbach, H.: Application of strength hypotheses for POM. In: Radusch, H.-J., Fiedler, L. (eds.) 14 International Scientific Conference on Polymeric Materials P.2010, 12 p. Halle (Saale), 15–17 September 2010 (2010)

  43. Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Strength hypotheses for hard polymeric foams. In: International Conference on Advances in Experimental Mechanics: Integrating Simulation and Experimentation for Validation (ISEV), 6 p. The Royal College of Physicians, Edinburgh, 7–9 September 2011 (2011)

  44. Kolupaev, V.A., Mönnich, S., Bijanzadeh, P.: Specimens for 2D- and 3D-Tension tests of hard foams (in German) In: 13 Tagung Problemseminar Deformation und Bruchverhalten von Kunststoffen, 29. Juni bis 01. Juli 2011, Kunststoff-Kompetenzzentrum Halle-Merseburg (2011)

  45. Kolupaev, V.A., Bleier, A., Becker, W.: Anwendung der bimodalen Elastizitätstheorie auf den Schaumkern eines Sandwiches. In: 13 Tagung Problemseminar Deformation und Bruchverhalten von Kunststoffen, 29. Juni bis 01. Juli 2011, Kunststoff-Kompetenzzentrum Halle-Merseburg (2011)

  46. Kolupaev, V.A., Yu, M.-H., Altenbach, H.: Yield criteria of hexagonal symmetry in the π-Plane. Acta Mech. 14 (2012). doi:10.1007/s00707-013-0830-5

  47. Lequeu, PH., Gilormini, P., Montheillet, F., Bacroix, B., Jonas, J.J.: Yield surfaces for textured polycrystals. Acta Metallurgica, 35(2), 439–451, 1159–1174 (1987)

    Google Scholar 

  48. Lebedev, A.A. (ed.), Koval’chuk, B.I., Giginjak, F.F., Lamashevsky, V.P.: Handbook of Mechanical Properties of Structural Materials at a Complex Stress State. Begell House, New York (2001)

  49. Lemaitre J., Chaboche J.-L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  50. Lode W.: Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Z. Physik 36, 913–939 (1926)

    Article  Google Scholar 

  51. Lüpfert H-P.: Beurteilung der statischen Festigkeit und Dauerfestigkeit metallischer Werkstoffe bei mehrachsiger Beanspruchung. Deutscher Verlag für Grundstoffindustrie, Leipzig (1994)

    Google Scholar 

  52. Marciniak Z.: Graphical representation of states of stress and strain. Archives of Mechanics, Polish Scient. Publ., Polish Academy of Sciences, Institute of Fundamental Technological Research 3, 261–274 (1971)

    Google Scholar 

  53. Mendera Z.: Wyţżenie spoiny czołowej w interpretacji powierzchni granicznych. Przeglad Spawalnictwa, SIMP, Warszawa XVIII(1), 6–13 (1966)

    Google Scholar 

  54. Mirolyubov, I.N.: K voprosu ob obobshenii teorii prochnosti oktaedticheskih kasatelnyh naprjazhenij na hrupkie materialy. pp. 42–52. Trudy Leningradskogo technologicheskogo instituta (1953)

  55. Murzewski J., Mendera Z.: Yield surface of steel determined by semi-empirical method. Bulletin de L’Academie Polonaise des Sciences, Serie des sciences techniques XI(7), 35–42 (1963)

    Google Scholar 

  56. Novozhilov V.V: O prinzipah obrabotki rezultatov staticheskih ispytanij izotropnyh materialov (in Russian). Prikladnaja Matematika i Mechanika XV(2), 183–194 (1951)

    Google Scholar 

  57. Ottosen N.S., Ristinmaa M.: The Mechanics of Constitutive Modeling. Elsevier, London (2005)

    Google Scholar 

  58. Pełczyński T.: Wpływ stanu napiecia na przejście materiału w stan plastyczny. Przeglad Mechaniczny 7, 204–208 (1951)

    Google Scholar 

  59. Pisarenko G., Lebedev A.: Soprotivlenie materialov deformirovaniju i razrusheniju pri slozhnom naprjazhennom sostojanii (in Russian). Naukowa Dumka, Kiew (1969)

    Google Scholar 

  60. Pisarenko G., Lebedev A.: Deformation und Festigkeit von Werkstoffen bei zusammengesetzten Spannungszuständen (in Russian). Naukowa Dumka, Kiew (1976)

    Google Scholar 

  61. Reckling K.: Plastizitätstheorie und ihre Anwendung auf Festigkeitsprobleme. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  62. Sähn S., Göldner H., Nickel J., Fischer K.: Bruch- und Beurteilungskriterien in der Festigkeitslehre. Fachbuchverlag, Leipzig (1993)

    Google Scholar 

  63. Sayir M.: Zur Fließbedingung der Plastizitätstheorie. Ing. Arch. 39, 414–432 (1970)

    Article  MATH  Google Scholar 

  64. Shesterikov S.A.: On the construction of a theory for an ideally plastic body (in Russian). J. Appl. Math. Mech. 24(3), 604–608 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  65. Schofield A., Wroth P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  66. Schlimmer M.: Zeitabhängiges mechanisches Werkstoffverhalten: Grundlagen, Experimente, Rechenverfahren für die Praxis. Springer, Berlin (1984)

    Book  Google Scholar 

  67. Schmidt, R.: Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ingenieur-Archiv, III. Band, 3. Heft, pp. 215–235 (1932)

  68. Schleicher, F.: Über die Sicherheit gegen Überschreiten der Fliessgrenze bei statischer Beanspruchung, Der Bauingenieur, Heft 15, S. 253–261 (1928)

  69. Sdobirev V.P.: Kriterij dlitelnoj prochnosti dlja nekotorykh zharoprochnykh splavov pri slozhnom naprjazhennom sostojanii. Izvestija Akademii Nauk SSSR, Otdelenie tekhnicheskikh Nauk, Mechanika i Mashinostroenie 6, 93–99 (1959)

    Google Scholar 

  70. Shaw M.C., Sata T.: The plastic behavior of cellular materials. Int. J. Mech. Sci. 8, 469–478 (1966)

    Article  Google Scholar 

  71. Skrzypek J.: Plasticity and Creep: Theory, Examples and Problems. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  72. Sokolovsky V.V.: Theory of Plasticity (in Russian). Staatlicher Verlag der techn.-theor. Literatur, Moskau (1950)

    Google Scholar 

  73. Timoshenko S., Young D.H.: Elements of Strength of Materials. D. Van Nostrand Company, Princeton (1962)

    Google Scholar 

  74. Torre, C.: Einfluss der mittleren Hauptnormalspannung auf die Fließ- und Bruchgrenze. Österreichisches Ingenieur-Archiv, Heft 4/5, pp. 316–342 (1947)

  75. Torre C.: Grenzbedingung für spröden Bruch und plastisches Verhalten bildsamer Metalle. Österreichisches Ingenieur-Archiv 4(2), 174–189 (1950)

    MATH  Google Scholar 

  76. Tschoegl N. W.: Failure surfaces in principial stress space. J. Polym. Sci. Part C Polym. Symp. 32, 239–267 (1971)

    Article  Google Scholar 

  77. Volkov, S.D.: Basics of the statistical theory of strength (in Russ.). In: Joffe, A.F., Kurdjymov, G.B., Zhurkov, S.N. (eds.) Nekotorye problemy prochnosti tverdogo tela, Izdatel’stvo Akademii Nauk SSSR, Moscow, Leningrad, pp. 325–333 (1959)

  78. Westergaard H.M.: On the resitance of ductile materials to combined stress in two or three directions perpendicular to one another. J. Frankl. Inst. 189, 627–640 (1920)

    Article  Google Scholar 

  79. Williams : Stress Analysis of Polymers. Longman, London (1973)

    Google Scholar 

  80. Yagn Yu.I.: New methods of strength prediction (in Russian). Vestnik inzhenerov i tekhnikov 6, 237–244 (1931)

    Google Scholar 

  81. Yu M.-H.: General Behaviour of Isotropic Yield Function (in Chinese), pp. 1–11. Scientific and Technological Research Paper of Xi’an Jiaotong University, Xi’an (1961)

    Google Scholar 

  82. Yu M.-H.: Unified Strength Theory and its Applications. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  83. Yu M.-H., Mao G.-W., Qiang H.-F., Zhang Y.-Q.: Generalized Plasticity. Springer, Berlin (2006)

    Google Scholar 

  84. Yu M.-H., Ma G.-W., Li J.-C.: Structural Plasticity. Limit, Shakedown and Dynamic Plastic Analyses of Structures. Springer, Berlin (2009)

    Google Scholar 

  85. Yu M.-H., Mao G.-W., Li J.-C.: Computational Plasticity. Springer and Zhejiang University Press, Hangzhou and Berlin (2010)

    Google Scholar 

  86. Zawadzki J.: Ciśnienie zredukowane jako jeden z parametrów wytęźenia (Przyrost właściwej energii swobodnej jako miara wytęźenia). Rozprawy Inźynierskie LXXIII, 358–398 (1957)

    Google Scholar 

  87. Źyczkowski M.: Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publ., Warszawa (1981)

    MATH  Google Scholar 

  88. Zyczkowski M.: Discontinuous bifurcations in the case of the Burzyński-Torre yield condition. Acta Mech. 132(1), 19–35 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolupaev.

Additional information

The Unified Strength Theory is presented in [82-85]. In addition, the theory is discussed in [39, 40]. A term “theory” has a historical origin and reflects the connection with the classical theories (experimentally founded hypotheses) of strength.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolupaev, V.A., Yu, M.H. & Altenbach, H. Visualization of the Unified Strength Theory . Arch Appl Mech 83, 1061–1085 (2013). https://doi.org/10.1007/s00419-013-0735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0735-8

Keywords

Navigation