Skip to main content
Log in

Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A micro-scale free vibration analysis of composite laminated Timoshenko beam (CLTB) model is developed based on the new modified couple stress theory. In this theory, a new anisotropic constitutive relation is defined for modeling the CLTB. This theory uses rotation–displacement as dependent variable and contains only one material length scale parameter. Hamilton’s principle is employed to derive the governing equations of motion and boundary conditions. This new model can be reduced to composite laminated Bernoulli–Euler beam model of the couple stress theory. An example analysis of free vibration of the cross-ply simply supported CLTB model is adopted, and an explicit expression of analysis solution is given. Additionally, the numerical results show that the present beam models can capture the scale effects of the natural frequencies of the micro-structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  2. Ma Q., Clarke D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  3. Stolken J.S., Evans A.G.: Microbend test method for measuring the plasticity length scale. Acta Materialia 46, 5109–5115 (1998)

    Article  Google Scholar 

  4. Chong A.C.M., Lam D.C.C.: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14, 4103–4110 (1999)

    Article  Google Scholar 

  5. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  6. McFarland A.W., Colton J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  7. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Koiter W.T.: Couple stresses in the theory of elasticity, I and II. Proc. K. Ned. Akad. Wet. B 67, 17–44 (1964)

    MATH  Google Scholar 

  9. Mindlin R.D., Tiersten H.F.: Effects of couple-stressed in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mindlin R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Batra R.C.: The initiation and growth of, and the interaction among, adiabatic shear bands in simple and dipolar materials. Int. J. Plast. 3, 75–89 (1987)

    Article  Google Scholar 

  12. Aifantis E.C.: On the microstructural origin of certain inelastic models. Trans. ASME J. Eng. Mater. Tech. 106, 326–330 (1984)

    Article  Google Scholar 

  13. Fleck N.A., Hutchinson J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fleck N.A., Hutchinson J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  Google Scholar 

  15. Gao H., Huang Y., Nix W.D., Hutchinson J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang F., Chong A.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory of elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  17. Park S.K., Gao X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  18. Kong S.L., Zhou S.J., Nie Z.F., Wang K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  MATH  Google Scholar 

  19. Ma H.M., Gao X.L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsiatas G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  21. Yin L., Qian Q., Wang L., Xia W.: Vibration analysis of microscale plates based on modified couple stress theory. Acta Mechanica Solida Sinica 23, 386–393 (2010)

    Google Scholar 

  22. Ma H.M., Gao X.L., Reddy J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  23. Jomehzadeh E., Noori H.R., Saidi A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys. E Low-dimens. Syst. Nanostruct. 43(4), 877–883 (2011)

    Article  Google Scholar 

  24. Wang B.L., Zhao J.F., Zhou S.J., Chen X.: A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 30(4), 517–524 (2011)

    Article  MATH  Google Scholar 

  25. Reddy J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  MathSciNet  Google Scholar 

  26. Reddy J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48(11), 1507–1518 (2010)

    Article  MATH  Google Scholar 

  27. Reddy J.N., Kim J.A.: nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94, 1128–1143 (2012)

    Article  Google Scholar 

  28. Chen W.J., Li I., Ma X.: A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation. Compos. Struct. 93, 2723–2732 (2011)

    Article  Google Scholar 

  29. Chen W.J., Ma X., Li L.: A model of composite laminated Reddy plate based on new modified couple stress theory. Compos. Struct. 94, 2143–2156 (2012)

    Article  Google Scholar 

  30. Chen, W.J., Chen, W.W., Sze, K.Y.: A model of composite laminated Reddy beam based on a modified couple-stress theory. Compos. Struct. (2012). doi:10.1016/j.compstruct.2012.02.020 (available online)

  31. Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  32. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd edn. CRC press, Boca Raton (2006)

    Google Scholar 

  33. Wu Z., Chen W.J.: An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams. Compos. Struct. 84(4), 337–349 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Ji Chen.

Additional information

Contract/grant sponsor: National Natural Sciences Foundation of China (No. 11072156).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W.J., Li, X.P. Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory. Arch Appl Mech 83, 431–444 (2013). https://doi.org/10.1007/s00419-012-0689-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0689-2

Keywords

Navigation