Skip to main content
Log in

The expression patterns of aquaporin 9, vacuolar H+-ATPase, and cytokeratin 5 in the epididymis of the common vampire bat

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Desmodus rotundus is a vampire bat species that inhabits Latin America. Some basic aspects of this species’ biology are still unknown, as the histophysiological characteristics of the male reproductive tract. Our study has focused on its epididymis, which is an important organ for performing a variety of functions, especially the sperm maturation and storage. The aim of this study was to identify principal, narrow, clear, and basal cells using cell-specific markers such as aquaporin 9 (AQP9), vacuolar H+-ATPase (V-ATPase), and cytokeratin 5 (KRT5). Principal cells were labeled by AQP9 from initial segment to cauda region in their stereocilia. They were shown with a columnar shape, whereas V-ATPase-rich cells were identified with a goblet-shaped body along the entire epididymis, including the initial segment, which were named as clear cells. Pencil-shaped V-ATPase-rich cells (narrow cells) were not detected in the initial segment of the bat epididymis, unlike in the rodent. Basal cells were labeled by KRT5 and were located at the basal portion of the epithelium forming a dense network. However, no basal cells with a luminal-reaching body extension were observed in the bat epididymis. In summary, epithelial cells were identified by their specific markers in the vampire bat epididymis. Principal and basal cells were labeled by AQP9 and KRT5, respectively. Narrow cells were not observed in the vampire bat epididymis, whereas clear cells were identified by V-ATPase labeling along the entire duct in a goblet-shaped body. In addition, no luminal-reaching basal cells were observed in the vampire bat epididymis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamali HI, Hermo L (1996) Apical and narrow cells are distinct cell types differing in their structure, distribution, and functions in the adult rat epididymis. J Androl 17:206–222

    Google Scholar 

  • Almeida MF, Martorelli LFA, Aires CC, Barros RF, Massad E (2008) Vaccinating the vampire bat Desmodus rotundus against rabies. Virus Res 137:275–277

    Article  CAS  PubMed  Google Scholar 

  • Altringham JD (1998) Bats: biology and behavior. Oxford University Press, New York

    Google Scholar 

  • Barros MS, Morais DB, Araújo MR, Carvalho TF, Matta SLP, Pinheiro EC, Freitas MB (2013) Seasonal variation of energy reserves and reproduction in neotropical free-tailed bats Molossus molossus (Chiroptera: Molossidae). Braz J Biol 73:629–635

    Article  CAS  PubMed  Google Scholar 

  • Beguelini MR, Sergio BF, Leme FL, Taboga SR, Morielle-Versute E (2010) Morphological and morphometric characteristics of the epididymis in the Neotropical bats Eumops glaucinus and Molossus molossus (Chiroptera: Molossidae). Chiropt Neotrop 16:769–779

    Google Scholar 

  • Beguelini MR, Puga CCI, Taboga SR, Morielle-Versute E (2013) Annual reproductive cycle of males of the flat-faced fruit-eating bat, Artibeus planirostris (Chiroptera: Phyllostomidae). Gen Comp Endocrinol 185:80–89

    Article  CAS  PubMed  Google Scholar 

  • Beguelini MR, Góes RM, Taboga SR, Morielle-Versute E (2014) Two periods of total testicular regression are peculiar events of the annual reproductive cycle of the black Myotis bat, Myotis nigricans (Chiroptera:Vespertilionidae). Reprod Fertil Dev 26:834–846

    Article  CAS  PubMed  Google Scholar 

  • Belleannée C, Thimon V, Sullivan R (2012) Region-specific gene expression in the epididymis. Cell Tissue Res 349:717–731

    Article  PubMed  Google Scholar 

  • Breton S, Brown D (2013) Regulation of luminal acidification by the V-ATPase. Physiol 28:318–329

    Article  CAS  Google Scholar 

  • Cheung K-H, Leung GP, Leung MC, Shum WW, W-l Zhou, Wong PY (2005) Cell–cell interaction underlies formation of fluid in the male reproductive tract of the rat. J Gen Physiol 125:443–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Clulow J, Jones R, Hansen L, Man S (1998) Fluid and electrolyte reabsorption in the ductuli efferentes testis. J Reprod Fertil Suppl 53:1–14

    CAS  PubMed  Google Scholar 

  • Cornwall GA, von Horsten HH, Swartz D, Johnson S, Chau K, Whelly S (2007) Extracellular quality control in the epididymis. Asian J Androl 9:500–507

    Article  CAS  PubMed  Google Scholar 

  • Da Silva N, Shum WW, Breton S (2007a) Regulation of vacuolar proton pumping ATPase-dependent luminal acidification in the epididymis. Asian J Androl 9:476–482

    Article  PubMed  Google Scholar 

  • Da Silva N, Shum WW, El-Annan J, Păunescu TG, McKee M, Smith PJS, Brown D, Breton S (2007b) Relocalization of the V-ATPase B2 subunit to the apical membrane of epididymal clear cells of mice deficient in the B1 subunit. Am J Physiol Cell Physiol 293:199–210

    Article  Google Scholar 

  • Da Silva N, Pisitkun T, Belleannée C, Miller LR, Nelson R, Knepper MA, Brown D, Breton S (2010) Proteomic analysis of V-ATPase-rich cells harvested from the kidney and epididymis by fluorescence-activated cell sorting. Am J Physiol Cell Physiol 298:1326–1342

    Article  Google Scholar 

  • Domeniconi RF, Orsi AM, Beu CCL, Felisbino SL (2007) Morphological features of the epididymal epithelium of gerbil, Meriones unguiculatus. Tissue Cell 39:47–57

    Article  PubMed  Google Scholar 

  • Elkjær M-L, Vajda Z, Nejsum LN, Kwon TH, Jensen UB, Amiry-Moghaddam M, Frokiær J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276:1118–1128

    Article  PubMed  Google Scholar 

  • Freitas MB, Welker AF, Pinheiro EC (2006) Seasonal variation and food deprivation in common vampire bats (Chiroptera: Phyllostomidae). Braz J Biol 66:1051–1055

    CAS  PubMed  Google Scholar 

  • Gomes MN, Uieda W (2004) Abrigos diurnos, composição de colônias, dimorfismo sexual e reprodução do morcego hematófago Desmodus rotundus (E. Geoffroy) (Chiroptera, Phyllostomidae) no Estado de São Paulo, Brasil. Rev Bras Zool 21:629–638

    Article  Google Scholar 

  • Gregory M, Dufresne J, Hermo L, Cyr D (2001) Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology 142:854–863

    CAS  PubMed  Google Scholar 

  • Hermo L, Robaire B (2002) Epididymal cell types and their functions. In: Robaire B, Hinton BT (eds) The epididymis: from molecules to clinical practice. Plenum Press, New York, pp 81–102

    Chapter  Google Scholar 

  • Hermo L, Chong DL, Moffatt P, Sly WS, Waheed A, Smith CE (2005) Region-and cell-specific differences in the distribution of carbonic anhydrases II, III, XII, and XIV in the adult rat epididymis. J Histochem Cytochem 53:699–713

    Article  CAS  PubMed  Google Scholar 

  • Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A (2014) Vampire bat rabies: ecology, epidemiology and control. Viruses 6:1911–1928

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones R (1998) Plasma membrane structure and remodeling during sperm maturation in the epididymis. J Reprod Fertil Suppl 53:73–84

    CAS  PubMed  Google Scholar 

  • Jones R, Murdoch R (1996) Regulation of the motility and metabolism of spermatozoa for storage in the epididymis of eutherian and marsupial mammals. Reprod Fertil Dev 8:553–568

    Article  CAS  PubMed  Google Scholar 

  • Karnovisky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 15:127–137

    Google Scholar 

  • Kim B, Breton S (2016) The MAPK/ERK-signaling pathway regulates the expression and distribution of tight junction proteins in the mouse proximal epididymis. Biol Reprod 94:1–12

    Article  Google Scholar 

  • Kim B, Roy J, Shum WW, Da Silva N, Breton S (2015) Role of testicular luminal factors on Basal cell elongation and proliferation in the mouse epididymis. Biol Reprod 92:1–11

    Article  CAS  Google Scholar 

  • Kotait I, Carrieri ML, Carnieli Júnior P, Castilho JG, Oliveira RN, Macedo CI, Ferreira KCS, Achkar SM (2007) Reservatórios silvestres do vírus da raiva: um desafio para a saúde pública. Bol Epid Paul pp. 40

  • Krutzsch PH (1979) Male reproductive patterns in non-hibernating bats. J Reprod Fertil 56:333–344

    Article  CAS  PubMed  Google Scholar 

  • Lee DN, Papes M, Van Den Bussche RA (2012) Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS ONE 7:1–9

    CAS  Google Scholar 

  • Leung G, Cheung K, Leung C, Tsang M, Wong P (2004) Regulation of epididymal principal cell functions by basal cells: role of transient receptor potential (Trp) proteins and cyclooxygenase-1 (COX-1). Mol Cell Endocrinol 216:5–13

    Article  CAS  PubMed  Google Scholar 

  • Morais DB, Cupertino MC, Goulart LS, Freitas KM, Freitas MBD, Paula TAR, Matta SLP (2013) Histomorphometric evaluation of the Molossus molossus (Chriptera, Molossidae) testis: the tubular compartment and indices of sperm production. Anim Reprod Sci 140:268–278

    Article  PubMed  Google Scholar 

  • Neuweiler G (2000) The biology of bats. Oxford University Press, New York

    Google Scholar 

  • Oliveira RL, Campolina-Silva GH, Nogueira JC, Mahecha GA, Oliveira CA (2013) Differential expression and seasonal variation on aquaporins 1 and 9 in the male genital system of big fruit-eating bat Artibeus lituratus. Gen Comp Endocrinol 186:116–125

    Article  CAS  PubMed  Google Scholar 

  • Orgebin-Crist MC (1969) Studies on the function of the epididymis. Biol Reprod 1:155–175

    Article  Google Scholar 

  • Pastor-Soler N, Bagnis C, Sabolic I, Tyszkowski R, McKee M, Van Hoek A, Breton S, Brown D (2001) Aquaporin 9 expression along the male reproductive tract. Biol Reprod 65:384–393

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Al-Dossary AA, Stabley DL, Barone C, Galileo DS, Strehler EE, Martin-DeLeon PA (2013) Plasma membrane Ca2+-ATPase 4 in murine epididymis: secretion of splice variants in the luminal fluid and a role in sperm maturation. Biol Reprod 89:1–11

    Article  Google Scholar 

  • Păunescu TG, Da Silva N, Marshansky V, McKee M, Breton S, Brown D (2004) Expression of the 56-kDa B2 subunit isoform of the vacuolar H+-ATPase in proton-secreting cells of the kidney and epididymis. Am J Physiol Cell Physiol 287:149–162

    Article  Google Scholar 

  • Peracchi AL, Lima IP, Reis NR, Nogueira MR, Filho HO (2007) Ordem Chiroptera. In: Mamíferos do Brasil. Londrina, pp 153–230

  • Pietrement C, Sun-Wada G, Da Silva N, McKee M, Marshansky V, Brown D, Futai M, Breton S (2006) Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod 74:185–194

    Article  CAS  PubMed  Google Scholar 

  • Robaire B, Hinton BT (2015) The epididymis: Knobil and Neill’s physiology of reproduction, 2nd edn. Academic Press, London, pp 691–771

    Book  Google Scholar 

  • Roy J, Kim B, Hill E, Visconti P, Krapf D, Vinegoni C, Weissleder R, Brown D, Breton S (2016) Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun. doi:10.1038/ncomms10666

    Google Scholar 

  • Schimming B, Pinheiro P, Matteis R, Machado C, Domeniconi R (2015) Immunolocalization of aquaporins 1 and 9 in the ram efferent ducts and epididymis. Reprod Domest Anim 50:617–624

    Article  CAS  PubMed  Google Scholar 

  • Serre V, Robaire B (1998) Segment-specific morphological changes in aging Brown Norway rat epididymis. Biol Reprod 58:497–513

    Article  CAS  PubMed  Google Scholar 

  • Shum WWC, Da Silva N, McKee M, Smith PJ, Brown D, Breton S (2008) Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 135:1108–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shum WW, Da Silva N, Brown D, Breton S (2009) Regulation of luminal acidification in the male reproductive tract via cell–cell crosstalk. J Exp Biol 212:1753–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shum WW, Ruan YC, Silva N, Breton S (2011) Establishment of cell-cell cross talk in the epididymis: control of luminal acidification. J Androl 32:576–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shum WW, Hill E, Brown D, Breton S (2013) Plasticity of basal cells during postnatal development in the rat epididymis. Reproduction 146:455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shum WW, Smith TB, Cortez-Retamozo V, Grigoryeva LS, Roy JW, Hill E, Pittet MJ, Breton S, Da Silva N (2014) Epithelial basal cells are distinct from dendritic cells and macrophages in the mouse epididymis. Biol Reprod 90:1–10

    Article  Google Scholar 

  • Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidasi S, Gugginoi WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743

    Article  CAS  PubMed  Google Scholar 

  • Turner T (1995) On the epididymis and its role in the development of the fertile ejaculate. J Androl 16:292–298

    CAS  PubMed  Google Scholar 

  • WHO-World Health Organization (2013) WHO Expert Consultation on Rabies. Second report. World Health Organization Technical Report Series 2013:1–139

  • Wilson DE, Findley JS (1970) Reproductive cycle of a Neotropical insectivorous bat, Myotis nigricans. Nature 225(5238):1155

    Article  CAS  PubMed  Google Scholar 

  • Wong P, Yeung C (1978) Absorptive and secretory functions of the perfused rat cauda epididymidis. J Physiol 275:13–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Jerusa M. Oliveira, Bruno E.S. Melo, and Susana P. Ribeiro for their support during the collection of the bats. The study was carried out in the Program in Membrane Biology (PMB) Laboratory at Massachusetts General Hospital and supported by National Institutes of Health (NIH) grants HD040793 and DK097124 (to Sylvie Breton.); Mariana M. Castro has been granted a fellowship of Brazilian Federal Agency for Support and Evaluation of Graduate School (CAPES) and participated as a visiting graduate student in the PMB with scholarship from CAPES (Process Number—99999.011031/2013-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Machado-Neves.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest to declare.

Additional information

Mariana M. Castro and Bongki Kim have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Negative controls performed in Desmodus rotundus’ epididymis omitting all primary antibodies and using as secondary antibody Alexa 488-conjugated goat anti-rabbit IgG (AQP9, Cldn1, KRT5) and CY3-conjugated donkey anti-chicken (V-ATPase) and anti-rat IgG (ZO-1). Sperm and nuclei are labeled with DAPI (blue). Scales 50 µm (TIFF 11769 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, M.M., Kim, B., Hill, E. et al. The expression patterns of aquaporin 9, vacuolar H+-ATPase, and cytokeratin 5 in the epididymis of the common vampire bat. Histochem Cell Biol 147, 39–48 (2017). https://doi.org/10.1007/s00418-016-1477-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1477-9

Keywords

Navigation