Skip to main content

Advertisement

Log in

A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment

Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The localization precision is a crucial and important parameter for single-molecule localization microscopy (SMLM) and directly influences the achievable spatial resolution. It primarily depends on experimental imaging conditions and the registration potency of the algorithm used. We propose a new and simple routine to estimate the average experimental localization precision in SMLM, based on the nearest neighbor analysis. By exploring different experimental and simulated targets, we show that this approach can be generally used for any 2D or 3D SMLM data and that reliable values for the localization precision σ SMLM are obtained. Knowing σ SMLM is a prerequisite for consistent visualization or any quantitative structural analysis, e.g., cluster analysis or colocalization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banterle N, Bui KH et al (2013) Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol 183(3):363–367

    Article  CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Bobroff N (1986) Position measurement with a resolution and noise-limited instrument. Rev Sci Instrum 57(6):1152–1157

    Article  Google Scholar 

  • Cheezum MK, Walker WF et al (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81(4):2378–2388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Churchman LS, Flyvbjerg H et al (2006) A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques. Biophys J 90(2):668–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desai A (2012) Fluorescence procedures for the actin and tubulin cytoskeleton in fixed cells. http://mitchison.med.harvard.edu/protocols/general/Fluorescence%20Procedures%20for%20the%20Actin%20and%20Tubulin%20Cytoskeleton%20in%20Fixed%20Cells.pdf

  • DeSantis MC, DeCenzo SH et al (2010) Precision analysis for standard deviation measurements of immobile single fluorescent molecule images. Opt Express 18(7):6563–6576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deschout H, Neyts K et al (2012) The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy. J Biophotonics 5(1):97–109

    Article  CAS  PubMed  Google Scholar 

  • Endesfelder U, van de Linde S et al (2010) Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. ChemPhysChem 11(4):836–840

    Article  CAS  PubMed  Google Scholar 

  • Endesfelder U, Malkusch S et al (2011) Chemically induced photoswitching of fluorescent probes—a general concept for super-resolution microscopy. Molecules 16(4):3106–3118

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald JE, Lu J et al (2012) Estimation theoretic measure of resolution for stochastic localization microscopy. Phys Rev Lett 109(4):048102

    Article  PubMed Central  PubMed  Google Scholar 

  • Heilemann M, van de Linde S et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176

    Article  CAS  Google Scholar 

  • Huang B, Wang W et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia H, Yang J et al (2010) Minimum variance unbiased subpixel centroid estimation of point image limited by photon shot noise. J Opt Soc Am A Opt Image Sci Vis 27(9):2038–2045

    Article  PubMed  Google Scholar 

  • Kubitscheck U, Kuckmann O et al (2000) Imaging and tracking of single GFP molecules in solution. Biophys J 78(4):2170–2179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lando D, Endesfelder U et al (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2(7):120078

    Article  PubMed Central  PubMed  Google Scholar 

  • Loschberger A, van de Linde S et al (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125(Pt 3):570–575

    Article  PubMed  Google Scholar 

  • Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62(21):2535–2538

    Article  CAS  PubMed  Google Scholar 

  • Mortensen KI, Churchman LS et al (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukamel EA, Schnitzer MJ (2012) Unified resolution bounds for conventional and stochastic localization fluorescence microscopy. Phys Rev Lett 109(16):168102

    Article  PubMed Central  PubMed  Google Scholar 

  • Muranyi W, Malkusch S et al (2013) Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathog 9(2):e1003198

    Article  PubMed Central  PubMed  Google Scholar 

  • Nieuwenhuizen RPJ, Lidke KA et al (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10(6):557

    Article  CAS  PubMed  Google Scholar 

  • Ober RJ, Ram S et al (2004) Localization accuracy in single-molecule microscopy. Biophys J 86(2):1185–1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20

    Article  CAS  Google Scholar 

  • Olivier N, Keller D et al (2013) Resolution doubling in 3D-STORM imaging through improved buffers. PLoS ONE 8(7):e69004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orrit M, Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett 65(21):2716–2719

    Article  CAS  PubMed  Google Scholar 

  • Ram S, Ward ES et al (2006) Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy. Proc Natl Acad Sci USA 103(12):4457–4462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rust MJ, Bates M et al (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37(1):10–21

    Google Scholar 

  • Small AR (2009) Theoretical limits on errors and acquisition rates in localizing switchable fluorophores. Biophys J 96(2):L16–L18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steinhauer C, Jungmann R et al (2009) DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew Chem Int Ed 48(47):8870–8873

    Article  CAS  Google Scholar 

  • Thompson RE, Larson DR et al (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truan Z, Tarancon Diez L et al (2013) Quantitative morphological analysis of arrestin2 clustering upon G protein-coupled receptor stimulation by super-resolution microscopy. J Struct Biol 184(2):329–334

    Article  CAS  PubMed  Google Scholar 

  • Vaughan JC, Jia S et al (2012) Ultrabright photoactivatable fluorophores created by reductive caging. Nat Methods 9(12):1181–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaughan JC, Dempsey GT et al (2013) Phosphine quenching of cyanine dyes as a versatile tool for fluorescence microscopy. J Am Chem Soc 135(4):1197–1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolter S, Schuttpelz M et al (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Wolter S, Endesfelder U et al (2011) Measuring localization performance of super-resolution algorithms on very active samples. Opt Express 19(8):7020–7033

    Article  PubMed  Google Scholar 

  • Yau W, Zhiping L et al (2011) Limit of the accuracy of parameter estimation for moving single molecules imaged by fluorescence microscopy. Signal Process IEEE Trans 59(3):895–911

    Article  Google Scholar 

Download references

Acknowledgments

We thank Steve Wolter for helpful discussions. We acknowledge funding by the German Ministry of Education and Research (Grants 0315262 and 0316170D) and the cluster of excellence “Macromolecular Complexes” (CEF, DFG cluster of excellence (EXC 115)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulrike Endesfelder or Mike Heilemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 2453 kb)

Supplementary software package (ZIP 763 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endesfelder, U., Malkusch, S., Fricke, F. et al. A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol 141, 629–638 (2014). https://doi.org/10.1007/s00418-014-1192-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1192-3

Keywords

Navigation