Skip to main content

Advertisement

Log in

Phototransformable fluorescent proteins: which one for which application?

Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In these last two decades , fluorescent proteins (FPs) have become highly valued imaging tools for cell biology, owing to their compatibility with living samples, their low levels of invasiveness and the possibility to specifically fuse them to a variety of proteins of interest. Remarkably, the recent development of phototransformable fluorescent proteins (PTFPs) has made it possible to conceive optical imaging experiments that were unimaginable only a few years ago. For example, it is nowadays possible to monitor intra- or intercellular trafficking, to optically individualize single cells in tissues or to observe single molecules in live cells. The tagging specificity brought by these genetically encoded highlighters leads to constant progress in the engineering of increasingly powerful, versatile and non-cytotoxic FPs. This review is focused on the recent developments of PTFPs and highlights their contribution to studies within cells, tissues and even living organisms. The aspects of single-molecule localization microscopy, intracellular tracking of photoactivated molecules, applications of PTFPs in biotechnology/optobiology and complementarities between PTFPs and other microscopy techniques are particularly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. To attain the highest possible resolution, a correct sampling is required. Sampling is defined by the Nyquist–Shannon theorem (Shannon 1949), which for PALM imaging in two dimensions corresponds to the observation of molecules spatially separated by intervals finer than the observed feature. For a resolution d, the intermolecular interval d/2 within a spot of diameter D defines the minimal molecular density \(\rho = \left[ {\pi \times \left( \frac{D}{2} \right)^{2} } \right]/\left( \frac{d}{2} \right)^{2} = \pi \times \left( \frac{D}{d} \right)^{2}\), D and d being expressed in nanometers. Below the value ρ, the feature is said under-sampled and above, it is said over-sampled. Reversely, the maximal attainable Nyquist resolution d of a correctly sampled feature is given by \(d = D \times \sqrt {\frac{\pi }{\rho }}\). In PALM conditions, this translates to the sampling of molecular densities ranging from 3 × 102 to 3 × 104 molecules/µm2 in order to reach Nyquist resolutions comprised between 100 and 10 nm.

References

  • Abbe EK (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9(1):413–418

    Google Scholar 

  • Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci USA 105(47):18343–18348. doi:10.1073/pnas.0805949105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adam V, Carpentier P, Violot S, Lelimousin M, Darnault C, Nienhaus GU, Bourgeois D (2009) Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein. J Am Chem Soc 131(50):18063–18065. doi:10.1021/ja907296v

    CAS  PubMed  Google Scholar 

  • Adam V, Mizuno H, Grichine A, Hotta J, Yamagata Y, Moeyaert B, Nienhaus GU, Miyawaki A, Bourgeois D, Hofkens J (2010) Data storage based on photochromic and photoconvertible fluorescent proteins. J Biotechnol 149(4):289–298. doi:10.1016/j.jbiotec.2010.04.001

    CAS  PubMed  Google Scholar 

  • Adam V, Moeyaert B, David CC, Mizuno H, Lelimousin M, Dedecker P, Ando R, Miyawaki A, Michiels J, Engelborghs Y, Hofkens J (2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18(10):1241–1251. doi:10.1016/j.chembiol.2011.08.007

    CAS  PubMed  Google Scholar 

  • Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99(20):12651–12656. doi:10.1073/pnas.202320599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306(5700):1370–1373. doi:10.1126/science.1102506

    CAS  PubMed  Google Scholar 

  • Ando R, Flors C, Mizuno H, Hofkens J, Miyawaki A (2007) Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys J 92(12):L97–L99. doi:10.1529/biophysj.107.105882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andresen M, Stiel AC, Trowitzsch S, Weber G, Eggeling C, Wahl MC, Hell SW, Jakobs S (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA 104(32):13005–13009. doi:10.1073/pnas.0700629104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andresen M, Stiel AC, Folling J, Wenzel D, Schonle A, Egner A, Eggeling C, Hell SW, Jakobs S (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26(9):1035–1040. doi:10.1038/nbt.1493

    CAS  PubMed  Google Scholar 

  • Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Identification of clustering artifacts in photoactivated localization microscopy. Nat Methods 8(7):527–528. doi:10.1038/nmeth.1627

    CAS  PubMed  Google Scholar 

  • Annibale P, Scarselli M, Greco M, Radenovic A (2012) Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy. Opt Nanosc 1(9):1–13

    Google Scholar 

  • Aramaki S, Hatta K (2006) Visualizing neurons one-by-one in vivo: optical dissection and reconstruction of neural networks with reversible fluorescent proteins. Dev Dyn 235(8):2192–2199. doi:10.1002/dvdy.20826

    CAS  PubMed  Google Scholar 

  • Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101(20):7805–7808. doi:10.1073/pnas.0401077101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badrinarayanan A, Reyes-Lamothe R, Uphoff S, Leake MC, Sherratt DJ (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338(6106):528–531. doi:10.1126/science.1227126

    CAS  PubMed  Google Scholar 

  • Baker SM, Buckheit RW 3rd, Falk MM (2010) Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol 11:15. doi:10.1186/1471-2121-11-15

    PubMed Central  PubMed  Google Scholar 

  • Barton K, Mathur N, Mathur J (2013) Simultaneous live-imaging of peroxisomes and the ER in plant cells suggests contiguity but no luminal continuity between the two organelles. Front Physiol 4:196. doi:10.3389/fphys.2013.00196

    PubMed Central  PubMed  Google Scholar 

  • Bates M, Huang B, Zhuang X (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12(5):505–514. doi:10.1016/j.cbpa.2008.08.008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bates M, Dempsey GT, Chen KH, Zhuang X (2012) Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. Chemphyschem: A Eur J Chem Phys Phys Chem 13(1):99–107. doi:10.1002/cphc.201100735

    CAS  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    CAS  PubMed  Google Scholar 

  • Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5(11):947–949. doi:10.1038/nmeth.1258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bizzarri R, Serresi M, Cardarelli F, Abbruzzetti S, Campanini B, Viappiani C, Beltram F (2010) Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable. J Am Chem Soc 132(1):85–95. doi:10.1021/ja9014953

    CAS  PubMed  Google Scholar 

  • Bock H, Geisler C, Wurm CA, von Middendorff C, Jakobs S, Schönle A, Egner A, Hell SW, Eggeling C (2007) Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl Phys B 88(2):161–165. doi:10.1007/s00340-007-2729-0

    CAS  Google Scholar 

  • Bourgeois D, Adam V (2012) Reversible photoswitching in fluorescent proteins: a mechanistic view. IUBMB Life 64(6):482–491. doi:10.1002/iub.1023

    CAS  PubMed  Google Scholar 

  • Brakemann T, Weber G, Andresen M, Groenhof G, Stiel AC, Trowitzsch S, Eggeling C, Grubmuller H, Hell SW, Wahl MC, Jakobs S (2010) Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J Biol Chem 285(19):14603–14609. doi:10.1074/jbc.M109.086314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brakemann T, Stiel AC, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C, Wahl MC, Hell SW, Jakobs S (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29(10):942–947. doi:10.1038/nbt.1952

    CAS  PubMed  Google Scholar 

  • Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, Lu J, Zhang J, Xu P, Xu T (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci USA 109(12):4455–4460. doi:10.1073/pnas.1113770109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chmyrov A, Keller J, Grotjohann T, Ratz M, d’Este E, Jakobs S, Eggeling C, Hell SW (2013) Nanoscopy with more than 100,000 ‘doughnuts’. Nat Methods 10(8):737–740. doi:10.1038/nmeth.2556

    CAS  PubMed  Google Scholar 

  • Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22(11):1435–1439. doi:10.1038/nbt1025

    CAS  PubMed  Google Scholar 

  • Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12):605–613. doi:10.1016/j.tibtech.2005.10.005

    CAS  PubMed  Google Scholar 

  • Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2(8):2024–2032. doi:10.1038/nprot.2007.291

    CAS  PubMed  Google Scholar 

  • Dai M, Fisher HE, Temirov J, Kiss C, Phipps ME, Pavlik P, Werner JH, Bradbury AR (2007) The creation of a novel fluorescent protein by guided consensus engineering. Protein Eng Des Select: PEDS 20(2):69–79. doi:10.1093/protein/gzl056

    CAS  Google Scholar 

  • Dedecker P, Hotta J, Flors C, Sliwa M, Uji-i H, Roeffaers MB, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J Am Chem Soc 129(51):16132–16141. doi:10.1021/ja076128z

    CAS  PubMed  Google Scholar 

  • Dedecker P, Mo GC, Dertinger T, Zhang J (2012) Widely accessible method for superresolution fluorescence imaging of living systems. Proc Natl Acad Sci USA 109(27):10909–10914. doi:10.1073/pnas.1204917109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dennis AM, Rhee WJ, Sotto D, Dublin SN, Bao G (2012) Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 6(4):2917–2924. doi:10.1021/nn2038077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci USA 106(52):22287–22292. doi:10.1073/pnas.0907866106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol: CB 17(6):520–527. doi:10.1016/j.cub.2007.01.052

    CAS  PubMed  Google Scholar 

  • Don Paul C, Kiss C, Traore DA, Gong L, Wilce MC, Devenish RJ, Bradbury A, Prescott M (2013) Phanta: a non-fluorescent photochromic acceptor for pcFRET. PLoS ONE 8(9):e75835. doi:10.1371/journal.pone.0075835

    PubMed Central  PubMed  Google Scholar 

  • Donner JS, Thompson SA, Kreuzer MP, Baffou G, Quidant R (2012) Mapping intracellular temperature using green fluorescent protein. Nano Lett 12(4):2107–2111. doi:10.1021/nl300389y

    CAS  PubMed  Google Scholar 

  • Duan C, Adam V, Byrdin M, Ridard J, Kieffer-Jaquinod S, Morlot C, Arcizet D, Demachy I, Bourgeois D (2013) Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein. J Am Chem Soc 135(42):15841–15850. doi:10.1021/ja406860e

    CAS  PubMed  Google Scholar 

  • Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C, Schonle A, Hell SW (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93(9):3285–3290. doi:10.1529/biophysj.107.112201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Endesfelder U, Malkusch S, Flottmann B, Mondry J, Liguzinski P, Verveer PJ, Heilemann M (2011) Chemically induced photoswitching of fluorescent probes—a general concept for super-resolution microscopy. Molecules 16(4):3106–3118. doi:10.3390/molecules16043106

    CAS  PubMed  Google Scholar 

  • Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M (2013) Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys J 105(1):172–181. doi:10.1016/j.bpj.2013.05.048

    CAS  PubMed  Google Scholar 

  • English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH, Elf J (2011) Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc Natl Acad Sci USA 108(31):E365–E373. doi:10.1073/pnas.1102255108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faas FG, Avramut MC, van den Berg BM, Mommaas AM, Koster AJ, Ravelli RB (2012) Virtual nanoscopy: generation of ultra-large high resolution electron microscopy maps. J Cell Biol 198(3):457–469. doi:10.1083/jcb.201201140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faro AR, Carpentier P, Jonasson G, Pompidor G, Arcizet D, Demachy I, Bourgeois D (2011) Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron. J Am Chem Soc 133(41):16362–16365. doi:10.1021/ja207001y

    PubMed  Google Scholar 

  • Folling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945. doi:10.1038/nmeth.1257

    PubMed  Google Scholar 

  • Fron E, Sliwa M, Adam V, Michiels J, Rocha S, Dedecker P, Hofkens J, Mizuno H (2013a) Excited state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy. Photochem Photobiol Sci. doi:10.1039/c3pp50335f

    Google Scholar 

  • Fron E, Van der Auweraer M, Hofkens J, Dedecker P (2013b) Excited state dynamics of photoswitchable fluorescent protein padron. J Phys Chem B 117(51):16422–16427. doi:10.1021/jp409654f

    CAS  PubMed  Google Scholar 

  • Fron E, Van der Auweraer M, Moeyaert B, Michiels J, Mizuno H, Hofkens J, Adam V (2013c) Revealing the excited-state dynamics of the fluorescent protein Dendra2. J Phys Chem B 117(8):2300–2313. doi:10.1021/jp309219m

    CAS  PubMed  Google Scholar 

  • Frost NA, Lu HE, Blanpied TA (2012) Optimization of cell morphology measurement via single-molecule tracking PALM. PLoS ONE 7(5):e36751. doi:10.1371/journal.pone.0036751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchs J, Bohme S, Oswald F, Hedde PN, Krause M, Wiedenmann J, Nienhaus GU (2010) A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat Methods 7(8):627–630. doi:10.1038/nmeth.1477

    CAS  PubMed  Google Scholar 

  • Gahlmann A, Ptacin JL, Grover G, Quirin S, von Diezmann AR, Lee MK, Backlund MP, Shapiro L, Piestun R, Moerner WE (2013) Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions. Nano Lett 13(3):987–993. doi:10.1021/nl304071h

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galanzha EI, Nedosekin DA, Sarimollaoglu M, Orza AI, Biris AS, Verkhusha VV, Zharov VP (2013) Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances. J Biophoton. doi:10.1002/jbio.201300140

  • Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478(7368):204–208. doi:10.1038/nature10497

    CAS  PubMed  Google Scholar 

  • Grotjohann T, Testa I, Reuss M, Brakemann T, Eggeling C, Hell SW, Jakobs S (2012) rsEGFP2 enables fast RESOLFT nanoscopy of living cells. eLife 1:e00248. doi:10.7554/eLife.00248

  • Gunewardene MS, Subach FV, Gould TJ, Penoncello GP, Gudheti MV, Verkhusha VV, Hess ST (2011) Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J 101(6):1522–1528. doi:10.1016/j.bpj.2011.07.049

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102(37):13081–13086. doi:10.1073/pnas.0406877102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson MR, Sattarzadeh A (2013) Trafficking of proteins through plastid stromules. Plant Cell 25(8):2774–2782. doi:10.1105/tpc.113.112870

    CAS  PubMed  Google Scholar 

  • Hanson GT, McAnaney TB, Park ES, Rendell MEP, Yarbrough DK, Chu SY, Xi LX, Boxer SG, Montrose MH, Remington SJ (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41(52):15477–15488. doi:10.1021/Bi026609p

    CAS  PubMed  Google Scholar 

  • Hartwich TM, Subach FV, Cooley L, Verkhusha VV, Bewersdorf J (2013) Determination of two-photon photoactivation rates of fluorescent proteins. Phys Chem Chem Phys 15(36):14868–14872. doi:10.1039/c3cp51035b

    CAS  PubMed  Google Scholar 

  • Hatta K, Tsujii H, Omura T (2006) Cell tracking using a photoconvertible fluorescent protein. Nat Protoc 1(2):960–967. doi:10.1038/nprot.2006.96

    CAS  PubMed  Google Scholar 

  • Heidbreder M, Zander C, Malkusch S, Widera D, Kaltschmidt B, Kaltschmidt C, Nair D, Choquet D, Sibarita JB, Heilemann M (2012) TNF-alpha influences the lateral dynamics of TNF receptor I in living cells. Biochim Biophys Acta 1823(10):1984–1989. doi:10.1016/j.bbamcr.2012.06.026

    CAS  PubMed  Google Scholar 

  • Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem 47(33):6172–6176. doi:10.1002/anie.200802376

    CAS  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    CAS  PubMed  Google Scholar 

  • Henderson JN, Ai HW, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA 104(16):6672–6677. doi:10.1073/pnas.0700059104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hendrix J, Flors C, Dedecker P, Hofkens J, Engelborghs Y (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94(10):4103–4113. doi:10.1529/biophysj.107.123596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. doi:10.1529/biophysj.106.091116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102(49):17565–17569. doi:10.1073/pnas.0506010102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoi H, Shaner NC, Davidson MW, Cairo CW, Wang J, Campbell RE (2010) A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J Mol Biol 401(5):776–791. doi:10.1016/j.jmb.2010.06.056

    CAS  PubMed  Google Scholar 

  • Hoi H, Matsuda T, Nagai T, Campbell RE (2013) Highlightable Ca2+ indicators for live cell imaging. J Am Chem Soc 135(1):46–49. doi:10.1021/ja310184a

    CAS  PubMed  Google Scholar 

  • Izeddin I, Specht CG, Lelek M, Darzacq X, Triller A, Zimmer C, Dahan M (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6(1):e15611. doi:10.1371/journal.pone.0015611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jakobs S (2006) High resolution imaging of live mitochondria. Biochim Biophys Acta 1763(5–6):561–575. doi:10.1016/j.bbamcr.2006.04.004

    CAS  PubMed  Google Scholar 

  • Jasik J, Boggetti B, Baluska F, Volkmann D, Gensch T, Rutten T, Altmann T, Schmelzer E (2013) PIN2 turnover in Arabidopsis root epidermal cells explored by the photoconvertible protein Dendra2. PLoS ONE 8(4):e61403. doi:10.1371/journal.pone.0061403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung G, Mais S, Zumbush A, Brauchle C (2000) The role of dark states in the photodynamics of the green fluorescent protein examined with two-color fluorescence excitation spectroscopy. J Phys Chem A 104(5):873–877

    CAS  Google Scholar 

  • Kao YT, Zhu X, Min W (2012) Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein. Proc Natl Acad Sci USA 109(9):3220–3225. doi:10.1073/pnas.1115311109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiss C, Temirov J, Chasteen L, Waldo GS, Bradbury AR (2009) Directed evolution of an extremely stable fluorescent protein. Protein Eng Des Select: PEDS 22(5):313–323. doi:10.1093/protein/gzp006

    CAS  Google Scholar 

  • Kitagawa M, Fujita T (2013) Quantitative imaging of directional transport through plasmodesmata in moss protonemata via single-cell photoconversion of Dendra2. J Plant Res 126(4):577–585. doi:10.1007/s10265-013-0547-5

    CAS  PubMed  Google Scholar 

  • Kiyonaka S, Kajimoto T, Sakaguchi R, Shinmi D, Omatsu-Kanbe M, Matsuura H, Imamura H, Yoshizaki T, Hamachi I, Morii T, Mori Y (2013) Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat Methods 10(12):1232–1238. doi:10.1038/nmeth.2690

    CAS  PubMed  Google Scholar 

  • Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6(5):339–342. doi:10.1038/nmeth.1324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF (2012) Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci USA 109(16):6136–6141. doi:10.1073/pnas.1121558109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kopek BG, Shtengel G, Grimm JB, Clayton DA, Hess HF (2013) Correlative photoactivated localization and scanning electron microscopy. PLoS ONE 8(10):e77209. doi:10.1371/journal.pone.0077209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J, Klenerman D, Carr AM, Sauer M, Allshire RC, Heilemann M, Laue ED (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2(7):120078. doi:10.1098/rsob.120078

    PubMed Central  PubMed  Google Scholar 

  • Lee SF, Thompson MA, Schwartz MA, Shapiro L, Moerner WE (2011) Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. Biophys J 100(7):L31–L33. doi:10.1016/j.bpj.2011.02.022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SH, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci USA 109(43):17436–17441. doi:10.1073/pnas.1215175109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, He Y, Zhao J, Zhang L, Sun MX (2013) Polar protein transport between apical and basal cells during tobacco early embryogenesis. Plant Cell Rep 32(2):285–291. doi:10.1007/s00299-012-1362-5

    CAS  PubMed  Google Scholar 

  • Lidke K, Rieger B, Jovin T, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Opt Express 13(18):7052–7062

    PubMed  Google Scholar 

  • Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19(11):555–565. doi:10.1016/j.tcb.2009.09.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 95(12):6803–6808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA (2000) Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275(34):25879–25882. doi:10.1074/jbc.C000338200

    CAS  PubMed  Google Scholar 

  • Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6(11):885–891. doi:10.1038/nrm1741

    CAS  PubMed  Google Scholar 

  • Lummer M, Humpert F, Wiedenlubbert M, Sauer M, Schuttpelz M, Staiger D (2013) A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. Mol Plant 6(5):1518–1530. doi:10.1093/mp/sst040

    CAS  PubMed  Google Scholar 

  • Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157. doi:10.1038/nmeth.1176

    CAS  PubMed  Google Scholar 

  • Manley S, Gillette JM, Lippincott-Schwartz J (2010) Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics. Methods Enzymol 475:109–120. doi:10.1016/S0076-6879(10)75005-9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao S, Benninger RK, Yan Y, Petchprayoon C, Jackson D, Easley CJ, Piston DW, Marriott G (2008) Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophys J 94(11):4515–4524. doi:10.1529/biophysj.107.124859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marriott G, Mao S, Sakata T, Ran J, Jackson DK, Petchprayoon C, Gomez TJ, Warp E, Tulyathan O, Aaron HL, Isacoff EY, Yan Y (2008) Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc Natl Acad Sci USA 105(46):17789–17794. doi:10.1073/pnas.0808882105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM (2009) Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J: Cell Mol Biol 59(1):150–162. doi:10.1111/j.1365-313X.2009.03850.x

    CAS  Google Scholar 

  • Mathur J, Griffiths S, Barton K, Schattat MH (2012) Green-to-red photoconvertible mEosFP-aided live imaging in plants. Methods Enzymol 504:163–181. doi:10.1016/B978-0-12-391857-4.00008-2

    CAS  PubMed  Google Scholar 

  • Matsuda T, Miyawaki A, Nagai T (2008) Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nat Methods 5(4):339–345. doi:10.1038/nmeth.1193

    CAS  PubMed  Google Scholar 

  • Matsuda T, Horikawa K, Saito K, Nagai T (2013) Highlighted Ca2+ imaging with a genetically encoded ‘caged’ indicator. Sci Rep 3:1398. doi:10.1038/srep01398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mavrakis M, Rikhy R, Lippincott-Schwartz J (2009) Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev Cell 16(1):93–104. doi:10.1016/j.devcel.2008.11.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazza D, Braeckmans K, Cella F, Testa I, Vercauteren D, Demeester J, De Smedt SS, Diaspro A (2008) A new FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy. Biophys J 95(7):3457–3469. doi:10.1529/biophysj.108.133637

    CAS  PubMed Central  PubMed  Google Scholar 

  • McAnaney TB, Park ES, Hanson GT, Remington SJ, Boxer SG (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. Biochemistry 41(52):15489–15494. doi:10.1021/Bi026610o

    CAS  PubMed  Google Scholar 

  • McAnaney TB, Shi X, Abbyad P, Jung H, Remington SJ, Boxer SG (2005) Green fluorescent protein variants as ratiometric dual emission pH sensors. 3. Temperature dependence of proton transfer. Biochemistry 44(24):8701–8711. doi:10.1021/bi050132a

    CAS  PubMed  Google Scholar 

  • McEvoy AL, Hoi H, Bates M, Platonova E, Cranfill PJ, Baird MA, Davidson MW, Ewers H, Liphardt J, Campbell RE (2012) mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS ONE 7(12):e51314. doi:10.1371/journal.pone.0051314

    PubMed Central  PubMed  Google Scholar 

  • McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6(2):131–133. doi:10.1038/nmeth.1296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195. doi:10.1038/28190

    CAS  PubMed  Google Scholar 

  • Miyawaki A (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48(2):189–199. doi:10.1016/j.neuron.2005.10.003

    CAS  PubMed  Google Scholar 

  • Mizuno H, Mal TK, Walchli M, Kikuchi A, Fukano T, Ando R, Jeyakanthan J, Taka J, Shiro Y, Ikura M, Miyawaki A (2008) Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci USA 105(27):9227–9232. doi:10.1073/pnas.0709599105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno H, Dedecker P, Ando R, Fukano T, Hofkens J, Miyawaki A (2010a) Higher resolution in localization microscopy by slower switching of a photochromic protein. Photochem Photobiol Sci 9(2):239–248. doi:10.1039/b9pp00124g

    CAS  PubMed  Google Scholar 

  • Mizuno H, Mal TK, Walchli M, Fukano T, Ikura M, Miyawaki A (2010b) Molecular basis of photochromism of a fluorescent protein revealed by direct 13C detection under laser illumination. J Biomol NMR 48(4):237–246. doi:10.1007/s10858-010-9453-5

    CAS  PubMed  Google Scholar 

  • Moerner WE (2002) Single-molecule optical spectroscopy of autofluorescent proteins. J Chem Phys 117(24):10925–10937

    CAS  Google Scholar 

  • Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377–381. doi:10.1038/nmeth.1447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muranyi W, Malkusch S, Muller B, Heilemann M, Krausslich HG (2013) Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathog 9(2):e1003198. doi:10.1371/journal.ppat.1003198

    PubMed Central  PubMed  Google Scholar 

  • Mutoh T, Miyata T, Kashiwagi S, Miyawaki A, Ogawa M (2006) Dynamic behavior of individual cells in developing organotypic brain slices revealed by the photoconvertable protein Kaede. Exp Neurol 200(2):430–437. doi:10.1016/j.expneurol.2006.03.022

    CAS  PubMed  Google Scholar 

  • Nguyen Bich N, Moeyaert B, Van Hecke K, Dedecker P, Mizuno H, Hofkens J, Van Meervelt L (2012) Structural basis for the influence of a single mutation K145 N on the oligomerization and photoswitching rate of Dronpa. Acta Crystallogr D Biol Crystallogr 68(Pt 12):1653–1659. doi:10.1107/S0907444912039686

    CAS  PubMed  Google Scholar 

  • Nienhaus K, Nienhaus GU (2013) Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev. doi:10.1039/c3cs60171d

    Google Scholar 

  • Nienhaus GU, Nienhaus K, Holzle A, Ivanchenko S, Renzi F, Oswald F, Wolff M, Schmitt F, Rocker C, Vallone B, Weidemann W, Heilker R, Nar H, Wiedenmann J (2006) Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82(2):351–358. doi:10.1562/2005-05-19-RA-533

    CAS  PubMed  Google Scholar 

  • Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95(4):2009–2016. doi:10.1529/biophysj.108.128751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nowotschin S, Hadjantonakis AK (2009) Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC Dev Biol 9(1):49. doi:10.1186/1471-213X-9-49

    PubMed Central  PubMed  Google Scholar 

  • Patterson GH (2011) Photoactivation and imaging of optical highlighter fluorescent proteins. Current protocols in cytometry/editorial board. J Paul Robinson, managing editor [et al] Chapter 12: Unit 12 23. doi:10.1002/0471142956.cy1223s57

  • Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877. doi:10.1126/science.1074952

    CAS  PubMed  Google Scholar 

  • Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32(9):407–414. doi:10.1016/j.tibs.2007.08.003

    CAS  PubMed  Google Scholar 

  • Pletnev S, Subach FV, Dauter Z, Wlodawer A, Verkhusha VV (2012) A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP. J Mol Biol 417(3):144–151. doi:10.1016/j.jmb.2012.01.044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Post JN, Lidke KA, Rieger B, Arndt-Jovin DJ (2005) One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett 579(2):325–330. doi:10.1016/j.febslet.2004.11.092

    CAS  PubMed  Google Scholar 

  • Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci USA 109(3):E135–E143. doi:10.1073/pnas.1107547108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richert S, Kleinecke S, Gunther J, Schaumburg F, Edgar J, Nienhaus GU, Nave KA, Kassmann CM (2013) In vivo labeling of peroxisomes by photoconvertible mEos2 in myelinating glia of mice. Biochimie. doi:10.1016/j.biochi.2013.10.022

    PubMed  Google Scholar 

  • Robinson JM, Takizawa T (2009) Correlative fluorescence and electron microscopy in tissues: immunocytochemistry. J Microsc 235(3):259–272. doi:10.1111/j.1365-2818.2009.03221.x

    CAS  PubMed  Google Scholar 

  • Roy A, Field MJ, Adam V, Bourgeois D (2011) The nature of transient dark states in a photoactivatable fluorescent protein. J Am Chem Soc 133(46):18586–18589. doi:10.1021/ja2085355

    CAS  PubMed  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:10.1038/nmeth929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato T, Takahoko M, Okamoto H (2006) HuC:Kaede, a useful tool to label neural morphologies in networks in vivo. Genesis 44(3):136–142. doi:10.1002/gene.20196

    CAS  PubMed  Google Scholar 

  • Schafer LV, Groenhof G, Boggio-Pasqua M, Robb MA, Grubmuller H (2008) Chromophore protonation state controls photoswitching of the fluoroprotein asFP595. PLoS Comput Biol 4(3):e1000034. doi:10.1371/journal.pcbi.1000034

    PubMed Central  PubMed  Google Scholar 

  • Schattat MH, Griffiths S, Mathur N, Barton K, Wozny MR, Dunn N, Greenwood JS, Mathur J (2012) Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell 24(4):1465–1477. doi:10.1105/tpc.111.095398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schenkel M, Sinclair AM, Johnstone D, Bewley JD, Mathur J (2008) Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos:FABD-mTn fluorescent fusion protein. Plant Methods 4(1):21. doi:10.1186/1746-4811-4-21

    PubMed Central  PubMed  Google Scholar 

  • Schwentker MA, Bock H, Hofmann M, Jakobs S, Bewersdorf J, Eggeling C, Hell SW (2007) Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc Res Tech 70(3):269–280. doi:10.1002/jemt.20443

    CAS  PubMed  Google Scholar 

  • Sengupta P, Lippincott-Schwartz J (2012) Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair-correlation analysis. BioEssays: News Rev Mol Cell Dev Biol 34(5):396–405. doi:10.1002/bies.201200022

    Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. doi:10.1038/nbt1037

    CAS  PubMed  Google Scholar 

  • Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5(6):545–551. doi:10.1038/nmeth.1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37(1):10–21

    Google Scholar 

  • Shigematsu Y, Yoshida N, Miwa Y, Mizobuti A, Suzuki Y, Tanimoto Y, Takahashi S, Kunita S, Sugiyama F, Yagami K (2007) Novel embryonic stem cells expressing tdKaede protein photoconvertible from green to red fluorescence. Int J Mol Med 20(4):439–444

    CAS  PubMed  Google Scholar 

  • Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 104(51):20308–20313. doi:10.1073/pnas.0710517105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423. doi:10.1038/nmeth.1202

    CAS  PubMed  Google Scholar 

  • Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44(18):7085–7094. doi:10.1021/bi047881x

    CAS  PubMed  Google Scholar 

  • Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC (2007) 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402(1):35–42. doi:10.1042/BJ20061401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stiel AC, Andresen M, Bock H, Hilbert M, Schilde J, Schonle A, Eggeling C, Egner A, Hell SW, Jakobs S (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95(6):2989–2997. doi:10.1529/biophysj.108.130146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subach FV, Malashkevich VN, Zencheck WD, Xiao H, Filonov GS, Almo SC, Verkhusha VV (2009a) Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states. Proc Natl Acad Sci USA 106(50):21097–21102. doi:10.1073/pnas.0909204106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009b) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6(2):153–159. doi:10.1038/nmeth.1298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV (2010a) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132(18):6481–6491. doi:10.1021/ja100906g

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subach FV, Zhang L, Gadella TW, Gurskaya NG, Lukyanov KA, Verkhusha VV (2010b) Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol 17(7):745–755. doi:10.1016/j.chembiol.2010.05.022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subach OM, Patterson GH, Ting LM, Wang Y, Condeelis JS, Verkhusha VV (2011) A photoswitchable orange-to-far-red fluorescent protein. PSmOrange. Nat Methods 8(9):771–777. doi:10.1038/nmeth.1664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subach OM, Entenberg D, Condeelis JS, Verkhusha VV (2012) A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics. J Am Chem Soc 134(36):14789–14799. doi:10.1021/ja3034137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatavarty V, Kim EJ, Rodionov V, Yu J (2009) Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS ONE 4(11):e7724. doi:10.1371/journal.pone.0007724

    PubMed Central  PubMed  Google Scholar 

  • Tian Z, Li AD (2013) Photoswitching-enabled novel optical imaging: innovative solutions for real-world challenges in fluorescence detections. Acc Chem Res 46(2):269–279. doi:10.1021/ar300108d

    CAS  PubMed  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi:10.1146/annurev.biochem.67.1.509

    CAS  PubMed  Google Scholar 

  • Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6(3):233–238. doi:10.1038/sj.embor.7400361

    CAS  PubMed Central  PubMed  Google Scholar 

  • van de Linde S, Krstic I, Prisner T, Doose S, Heilemann M, Sauer M (2011) Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem Photobiol Sci 10(4):499–506. doi:10.1039/c0pp00317d

    PubMed  Google Scholar 

  • van Thor JJ, Gensch T, Hellingwerf KJ, Johnson LN (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9(1):37–41. doi:10.1038/nsb739

    PubMed  Google Scholar 

  • Wang F, Liu P, Zhang Q, Zhu J, Chen T, Arimura S, Tsutsumi N, Lin J (2012) Phosphorylation and ubiquitination of dynamin-related proteins (AtDRP3A/3B) synergically regulate mitochondrial proliferation during mitosis. Plant J: Cell Mol Biol 72(1):43–56. doi:10.1111/j.1365-313X.2012.05052.x

    CAS  Google Scholar 

  • Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW, Hell SW, Jorgensen EM (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1):80–84. doi:10.1038/nmeth.1537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welman A, Serrels A, Brunton VG, Ditzel M, Frame MC (2010) Two-color photoactivatable probe for selective tracking of proteins and cells. J Biol Chem 285(15):11607–11616. doi:10.1074/jbc.M110.102392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiedenmann J, Nienhaus GU (2006) Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Rev Proteomics 3(3):361–374. doi:10.1586/14789450.3.3.361

    CAS  PubMed  Google Scholar 

  • Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101(45):15905–15910. doi:10.1073/pnas.0403668101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K, Bourgeois D, Nienhaus GU (2011) From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. J Biophoton 4(6):377–390. doi:10.1002/jbio.201000122

    CAS  Google Scholar 

  • Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3(9):721–723. doi:10.1038/nmeth922

    CAS  PubMed  Google Scholar 

  • Wong FH, Banks DS, Abu-Arish A, Fradin C (2007) A molecular thermometer based on fluorescent protein blinking. J Am Chem Soc 129(34):10302–10303. doi:10.1021/ja0715905

    CAS  PubMed  Google Scholar 

  • Wozny M, Schattat MH, Mathur N, Barton K, Mathur J (2012) Color recovery after photoconversion of H2B:mEosFP allows detection of increased nuclear DNA content in developing plant cells. Plant Physiol 158(1):95–106. doi:10.1104/pp.111.187062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu S, Koizumi K, Macrae-Crerar A, Gallagher KL (2011) Assessing the utility of photoswitchable fluorescent proteins for tracking intercellular protein movement in the Arabidopsis root. PLoS ONE 6(11):e27536. doi:10.1371/journal.pone.0027536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9(7):727–729. doi:10.1038/nmeth.2021

    CAS  PubMed  Google Scholar 

  • Zhong H (2010) Photoactivated localization microscopy (PALM): an optical technique for achieving ~10-nm resolution. Cold Spring Harbor protocols 2010 (12):pdb top91. doi:10.1101/pdb.top91

  • Zhou XX, Chung HK, Lam AJ, Lin MZ (2012) Optical control of protein activity by fluorescent protein domains. Science 338(6108):810–814. doi:10.1126/science.1226854

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

VA is grateful to Dominique Bourgeois for stimulating and fruitful discussions and to Jacques-Philippe Colletier for critical reading of the manuscript. Institutional Grants from the CNRS, CEA and UJF and financial support by the ANR (ANR-2011-BSV5-012-01 NOBLEACH) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgile Adam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, V. Phototransformable fluorescent proteins: which one for which application?. Histochem Cell Biol 142, 19–41 (2014). https://doi.org/10.1007/s00418-014-1190-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1190-5

Keywords

Navigation