Skip to main content
Log in

Differentiation of human embryonic stem cells to hepatocyte-like cells on a new developed xeno-free extracellular matrix

  • Short communication
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Human embryonic stem cells (hESCs) provide a new source for hepatocyte production in translational medicine and cell replacement therapy. The reported hESC-derived hepatocyte-like cells (HLCs) were commonly generated on Matrigel, a mouse cell line-derived extracellular matrix (ECM). Here, we performed the hepatic lineage differentiation of hESCs following a stepwise application of growth factors on a newly developed serum- and xeno-free, simple and cost-benefit ECM, designated “RoGel,” which generated from a modified conditioned medium of human fibroblasts. In comparison with Matrigel, the differentiated HLCs on both ECMs expressed similar levels of hepatocyte-specific genes, secreted α-fetoprotein, and metabolized ammonia, showed glycogen storage activity as well as low-density lipoprotein and indocyanine green uptake. The transplantation of hESC–HLCs into the carbon tetrachloride-injured liver demonstrated incorporation of the cells into the host mouse liver and the expression of albumin. The results suggest that the xeno-free and cost-benefit matrix may be applicable in bioartificial livers and also may facilitating a clinical application of human pluripotent stem cell-derived hepatocytes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Asgari S, Moslem M, Bagheri-Lankarani K, Pournasr B, Miryounesi M, Baharvand H (2013) Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev 9(4):493–504

    Article  CAS  PubMed  Google Scholar 

  • Baharvand H, Ashtiani SK, Taee A, Massumi M, Valojerdi MR, Yazdi PE, Moradi SZ, Farrokhi A (2006) Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev Growth Differ 48(2):117–128

    Article  PubMed  Google Scholar 

  • Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26(9):2257–2265

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45(5):1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Chin AC, Fong WJ, Goh LT, Philp R, Oh SK, Choo AB (2007) Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J Biotechnol 130(3):320–328

    Article  CAS  PubMed  Google Scholar 

  • Demetriou AA, Brown RS Jr, Busuttil RW, Fair J, McGuire BM, Rosenthal P, Am Esch JS 2nd, Lerut J, Nyberg SL, Salizzoni M, Fagan EA, de Hemptinne B, Broelsch CE, Muraca M, Salmeron JM, Rabkin JM, Metselaar HJ, Pratt D, De La Mata M, McChesney LP, Everson GT, Lavin PT, Stevens AC, Pitkin Z, Solomon BA (2004) Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 239(5):660–667

    Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Domogatskaya A, Rodin S, Boutaud A, Tryggvason K (2008) Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells 26(11):2800–2809

    Article  CAS  PubMed  Google Scholar 

  • Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54

    Article  CAS  PubMed  Google Scholar 

  • Evseenko D, Schenke-Layland K, Dravid G, Zhu Y, Hao Q-L, Scholes J, Wang XC, Maclellan WR, Crooks GM (2009) Identification of the critical extracellular matrix proteins that promote human embryonic stem cell assembly. Stem Cells Dev 18(6):919–928

    Article  CAS  PubMed  Google Scholar 

  • Farzaneh Z, Pournasr B, Ebrahimi M, Aghdami N, Baharvand H (2010) Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev 6(4):601–610

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez R, Jennings LL, Knuth M, Orth AP, Klock HE, Ou W, Feuerhelm J, Hull MV, Koesema E, Wang Y, Zhang J, Wu C, Cho CY, Su AI, Batalov S, Chen H, Johnson K, Laffitte B, Nguyen DG, Snyder EY, Schultz PG, Harris JL, Lesley SA (2010) Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc Natl Acad Sci USA 107(8):3552–3557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, Black JR, Elcombe C, Ross JA, Wolf R, Cui W (2008) Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 26(4):894–902

    Article  CAS  PubMed  Google Scholar 

  • Hazeltine LB, Selekman JA, Palecek SP (2013) Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol Adv 31(7):1002–1019

    Article  CAS  PubMed  Google Scholar 

  • Hongisto H, Vuoristo S, Mikhailova A, Suuronen R, Virtanen I, Otonkoski T, Skottman H (2012) Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res 8(1):97–108

    Article  CAS  PubMed  Google Scholar 

  • Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Fukumitsu K, Yasuchika K, Adachi K, Kawase E, Suemori H, Nakatsuji N, Ikai I, Uemoto S (2008) Effects of extracellular matrixes and growth factors on the hepatic differentiation of human embryonic stem cells. Am J Physiol Gastrointest Liver Physiol 295(2):G313–G321

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Yao H, Weber JL, Melkoumian ZK, Ye K (2012) A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells. PLoS ONE 7(11):e50880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhou J, Wang L, Shin ME, Su P, Lei X, Kuang H, Guo W, Yang H, Cheng L, Tanaka TS, Leckband DE, Reynolds AB, Duan E, Wang F (2010) Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol 191(3):631–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim JW, Bodnar A (2002) Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2(9):1187–1203

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Tavakoli T, Derby E, Serebryakova Y, Rao MS, Mattson MP (2008) Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol 8:90

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11(2):228–232

    Article  CAS  PubMed  Google Scholar 

  • Mazariegos GV, Kramer DJ, Lopez RC, Shakil AO, Rosenbloom AJ, DeVera M, Giraldo M, Grogan TA, Zhu Y, Fulmer ML, Amiot BP, Patzer JF (2001) Safety observations in phase I clinical evaluation of the excorp medical bioartificial liver support system after the first four patients. ASAIO J 47(5):471–475

    Article  CAS  PubMed  Google Scholar 

  • Millis JM, Cronin DC, Johnson R, Conjeevaram H, Conlin C, Trevino S, Maguire P (2002) Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure: system modifications and clinical impact. Transplantation 74(12):1735–1746

    Article  PubMed  Google Scholar 

  • Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, Kawase E, Sekiguchi K, Nakatsuji N, Suemori H (2008) Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 375(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Noghero A, Bussolino F, Gualandris A (2010) Role of the microenvironment in the specification of endothelial progenitors derived from embryonic stem cells. Microvasc Res 79(3):178–183

    Article  CAS  PubMed  Google Scholar 

  • Pakzad M, Ashtiani MK, Mousavi-Gargari SL, Baharvand H (2013) Development of a simple, repeatable, and cost-effective extracellular matrix for long-term xeno-free and feeder-free self-renewal of human pluripotent stem cells. Histochem Cell Biol 140(6):635–648

    Article  CAS  PubMed  Google Scholar 

  • Prowse AB, McQuade LR, Bryant KJ, Van Dyk DD, Tuch BE, Gray PP (2005) A proteome analysis of conditioned media from human neonatal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics 5(4):978–989

    Article  CAS  PubMed  Google Scholar 

  • Prowse ABJ, McQuade LR, Bryant KJ, Marcal H, Gray PP (2007) Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res 6(9):3796–3807

    Article  CAS  PubMed  Google Scholar 

  • Prowse AB, Doran MR, Cooper-White JJ, Chong F, Munro TP, Fitzpatrick J, Chung TL, Haylock DN, Gray PP, Wolvetang EJ (2010) Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials 31(32):8281–8288

    Article  CAS  PubMed  Google Scholar 

  • Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, Rozell B, Miettinen S, Narkilahti S, Kerkela E, Aalto-Setala K, Otonkoski T, Suuronen R, Hovatta O, Skottman H (2010) A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS ONE 5(4):e10246

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28(6):611–615

    Article  CAS  PubMed  Google Scholar 

  • Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, Irgang M, Kraemer M, Puhl G, Frank J, Muller AR, Steinmuller T, Denner J, Neuhaus P, Gerlach JC (2003) Clinical extracorporeal hybrid liver support—phase I study with primary porcine liver cells. Xenotransplantation 10(5):460–469

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RE, Linehan JL, Painschab MS, Hu WS, Verfaillie CM, Kaufman DS (2005) Defined conditions for development of functional hepatic cells from human embryonic stem cells. Stem Cells Dev 14(6):643–655

    Article  CAS  PubMed  Google Scholar 

  • Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51(1):297–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soto-Gutierrez A, Kobayashi N, Rivas-Carrillo JD, Navarro-Alvarez N, Zhao D, Okitsu T, Noguchi H, Basma H, Tabata Y, Chen Y, Tanaka K, Narushima M, Miki A, Ueda T, Jun HS, Yoon JW, Lebkowski J, Tanaka N, Fox IJ (2006) Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol 24(11):1412–1419

    Article  CAS  PubMed  Google Scholar 

  • Swistowski A, Peng J, Han Y, Swistowska AM, Rao MS, Zeng X (2009) Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS ONE 4(7):e6233

    Article  PubMed Central  PubMed  Google Scholar 

  • Tannenbaum SE, Turetsky TT, Singer O, Aizenman E, Kirshberg S, Ilouz N, Gil Y, Berman-Zaken Y, Perlman TS, Geva N, Levy O, Arbell D, Simon A, Ben-Meir A, Shufaro Y, Laufer N, Reubinoff BE (2012) Derivation of xeno-free and GMP-grade human embryonic stem cells–platforms for future clinical applications. PLoS ONE 7(6):e35325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaajasaari H, Ilmarinen T, Juuti-Uusitalo K, Rajala K, Onnela N, Narkilahti S, Suuronen R, Hyttinen J, Uusitalo H, Skottman H (2011) Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol Vis 17:558–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH (2013) Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31(1):1–7. doi:10.1002/stem.1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vosough M, Moslem M, Pournasr B, Baharvand H (2011) Cell-based therapeutics for liver disorders. Br Med Bull 100:157–172

    Article  CAS  PubMed  Google Scholar 

  • Vuoristo S, Virtanen I, Takkunen M, Palgi J, Kikkawa Y, Rousselle P, Sekiguchi K, Tuuri T, Otonkoski T (2009) Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. J Cell Mol Med 13(8B):2622–2633

    Article  PubMed  Google Scholar 

  • Wilson CA, Wong S, Muller J, Davidson CE, Rose TM, Burd P (1998) Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol 72(4):3082–3087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, Ding S (2010) Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci 107(18):8129–8134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate MR Larijani for his technical support. This study was funded by the Department of Stem Cells and Developmental Biology at Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Baharvand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1894 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farzaneh, Z., Pakzad, M., Vosough, M. et al. Differentiation of human embryonic stem cells to hepatocyte-like cells on a new developed xeno-free extracellular matrix. Histochem Cell Biol 142, 217–226 (2014). https://doi.org/10.1007/s00418-014-1183-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1183-4

Keywords

Navigation