Skip to main content

Advertisement

Log in

The biogenesis protein PEX14 is an optimal marker for the identification and localization of peroxisomes in different cell types, tissues, and species in morphological studies

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Catalase and ABCD3 are frequently used as markers for the localization of peroxisomes in morphological experiments. Their abundance, however, is highly dependent on metabolic demands, reducing the validity of analyses of peroxisomal abundance and distribution based solely on these proteins. We therefore attempted to find a protein which can be used as an optimal marker for peroxisomes in a variety of species, tissues, cell types and also experimental designs, independently of peroxisomal metabolism. We found that the biogenesis protein peroxin 14 (PEX14) is present in comparable amounts in the membranes of every peroxisome and is optimally suited for immunoblotting, immunohistochemistry, immunofluorescence, and immunoelectron microscopy. Using antibodies against PEX14, we could visualize peroxisomes with almost undetectable catalase content in various mammalian tissue sections (submandibular and adrenal gland, kidney, testis, ovary, brain, and pancreas from mouse, cat, baboon, and human) and cell cultures (primary cells and cell lines). Peroxisome labeling with catalase often showed a similar tissue distribution to the mitochondrial enzyme mitochondrial superoxide dismutase (both responsible for the degradation of reactive oxygen species), whereas ABCD3 exhibited a distinct labeling only in cells involved in lipid metabolism. We increased the sensitivity of our methods by using QuantumDots™, which have higher emission yields compared to classic fluorochromes and are unsusceptible to photobleaching, thereby allowing more exact quantification without artificial mistakes due to heterogeneity of individual peroxisomes. We conclude that PEX14 is indeed the best marker for labeling of peroxisomes in a variety of tissues and cell types in a consistent fashion for comparative morphometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CARD:

Catalyzed reporter deposition

DAB:

3,3′-Diaminobenzidine

DMSO:

Dimethylsulfoxide

DMEM:

Dulbecco’s modified Eagle medium

DTT:

Dithreitol

EM:

Electron microscopy

FBS:

Fetal bovine serum

FFPE:

Formalin-fixed paraffin-embedded

IF:

Immunofluorescence

IHC:

Immunohistochemistry

MEM:

Minimal essential medium

PEX13:

Peroxisome biogenesis protein 13

PEX14:

Peroxisome biogenesis protein 14

PBS:

Phosphate-buffered saline

PBSA:

Bovine serum albumin in phosphate-buffered saline

PFA:

Depolymerized paraformaldehyde

QDots:

QuantumDots™

ROS:

Reactive oxygen species

RT:

Room temperature

SOD2:

Mitochondrial superoxide dismutase

TBS:

Tris-buffered saline

TBST:

Tris-buffered saline plus 0.5 % Tween 20

WB:

Western blotting

References

  • Ahlemeyer B, Baumgart-Vogt E (2005) Optimized protocols for the simultaneous preparation of primary neuronal cultures of the neocortex, hippocampus and cerebellum from individual newborn (P0.5) C57Bl/6J mice. J Neurosci Methods 149:110–120

    Article  PubMed  CAS  Google Scholar 

  • Ahlemeyer B, Neubert I, Kovacs WJ, Baumgart-Vogt E (2007) Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J Comp Neurol 505:1–17

    Article  PubMed  CAS  Google Scholar 

  • Angermüller S (1989) Peroxisomal oxidases: cytochemical localization and biological relevance. Prog Histochem Cytochem 20:1–65

    Article  PubMed  Google Scholar 

  • Angermüller S, Fahimi HD (1981) Selective cytochemical localization of peroxidase, cytochrome oxidase and catalase in rat liver with 3,3′-diaminobenzidine. Histochemistry 71:33–44

    Article  PubMed  Google Scholar 

  • Arnold G, Holtzman E (1978) Microperoxisomes in the central nervous system of the postnatal rat. Brain Res 155:1–17

    Article  PubMed  CAS  Google Scholar 

  • Arnold G, Liscum L, Holtzman E (1979) Ultrastructural localization of d-amino acid oxidase in microperoxisomes of the rat nervous system. J Histochem Cytochem 27:735–745

    Article  PubMed  CAS  Google Scholar 

  • Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi HD, Declercq PE, Collen D, Van Veldhoven PP, Mannaerts GP (1997) A mouse model for Zellweger syndrome. Nat Genet 17:49–57

    Article  PubMed  CAS  Google Scholar 

  • Baudhuin P, Beaufay H, De Duve C (1965) Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomes or in particles containing urate oxidase, d-amino acid oxidase, and catalase. J Cell Biol 26:219–243

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E (1997) Application of in situ hybridization, cytochemical and immunocytochemical techniques for the investigation of peroxisomes. A review including novel data. Robert Feulgen Prize Lecture 1997. Histochem Cell Biol 108:185–210

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E, Völkl A, Hashimoto T, Fahimi HD (1989) Biogenesis of peroxisomes: immunocytochemical investigation of peroxisomal membrane proteins in proliferating rat liver peroxisomes and in catalase-negative membrane loops. J Cell Biol 108:2221–2231

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E, Fahimi HD, Stich A, Völkl A (1996) l-Lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation. J Biol Chem 27:3846–3855

    Google Scholar 

  • Baumgart E, Schad A, Völkl A, Fahimi HD (1997) Detection of mRNAs encoding peroxisomal proteins by non-radioactive in situ hybridization with digoxigenin-labelled cRNAs. Histochem Cell Biol 108:371–379

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E, Fahimi HD, Steininger H, Grabenbauer M (2003) A review of morphological techniques for detection of peroxisomal (and mitochondrial) proteins and their corresponding mRNAs during ontogenesis in mice: application to the PEX5-knockout mouse with Zellweger syndrome. Microsc Res Tech 61:121–138

    Article  PubMed  CAS  Google Scholar 

  • Berger J, Albet S, Bentejac M, Netik A, Holzinger A, Roscher AA, Bugaut M, Forss-Petter S (1999) The four murine peroxisomal ABC-transporter genes differ in constitutive, inducible and developmental expression. Eur J Biochem 1265:719–727

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, South S, Warren D, Jones J, Moser AB, Moser HW, Gould SJ (1999) Metabolic control of peroxisome abundance. J Cell Sci 112:1579–1590

    PubMed  CAS  Google Scholar 

  • Dastig S, Nenicu A, Otte DM, Zimmer A, Seitz J, Baumgart-Vogt E, Lüers GH (2011) Germ cells of male mice express genes for peroxisomal metabolic pathways implicated in the regulation of spermatogenesis and the protection against oxidative stress. Histochem Cell Biol 136:413–425

    Article  PubMed  CAS  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135:1–3

    Article  PubMed  CAS  Google Scholar 

  • Espeel M, Depreter M, Nardacci R, D’Herde K, Kerckaert I, Stefanini S, Roels F (1997) Biogenesis of peroxisomes in fetal liver. Microsc Res Tech 39:453–466

    Article  PubMed  CAS  Google Scholar 

  • Fahimi HD (1968) Cytochemical localization of peroxidase activity in rat hepatic microbodies (peroxisomes). J Histochem Cytochem 16(8):547–550

    Article  PubMed  CAS  Google Scholar 

  • Fahimi HD (1969) Cytochemical localization of peroxidatic activity of catalase in rat hepatic microbodies (peroxisomes). J Cell Biol 43:275–288

    Article  PubMed  CAS  Google Scholar 

  • Fahimi HD, Baumgart E (1999) Current cytochemical techniques for the investigation of peroxisomes. A review. J Histochem Cytochem 47:1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Fahimi HD, Reich D, Völkl A, Baumgart E (1996) Contributions of the immunogold technique to investigation of the biology of peroxisomes. Histochem Cell Biol 106:105–114

    Article  PubMed  CAS  Google Scholar 

  • Fransen M, Terlecky SR, Subramani S (1998) Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Proc Natl Acad Sci USA 95:8087–8092

    Article  PubMed  CAS  Google Scholar 

  • Ghosh N, Ghosh R, Mandal SC (2011) Antioxidant protection: a promising therapeutic intervention in neurodegenerative disease. Free Radic Res 45:888–905

    Article  PubMed  CAS  Google Scholar 

  • Goodsell DS (2004) Catalase. Molecule of the Month. RCSB Protein Data Bank. doi:10.2210/rcsb_pdb/mom_2004_9

  • Grabenbauer M, Fahimi HD, Baumgart E (2001) Detection of peroxisomal proteins and their mRNAs in serial sections of fetal and newborn mouse organs. J Histochem Cytochem 49:155–164

    Article  PubMed  CAS  Google Scholar 

  • Hirai KI (1969) Light microscopic study of the peroxidatic activity of catalase in formaldehyde-fixed rat liver. J Histochem Cytochem 17:585–590

    Article  PubMed  CAS  Google Scholar 

  • Holtzman E (1982) Peroxisomes in nervous tissue. Ann N Y Acad Sci 386:523–525

    Article  CAS  Google Scholar 

  • Hruban Z, Hopkins E, Slesers A, Vigil EL (1972) Microbodies—constituent organelles of animal cells. Lab Invest 27:184–191

    PubMed  CAS  Google Scholar 

  • Islinger M, Li KW, Seitz J, Völkl A, Lüers GH (2009) Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes—evidence for a natural piggyback import mechanism in mammals. Traffic 10:1711–1721

    Article  PubMed  CAS  Google Scholar 

  • Kamijo K, Kamijo T, Ueno I, Osumi T, Hashimoto T (1992) Nucleotide-sequence of the human 70 kDa peroxiomal membrane protein—a member of ATP-binding cassette transporters. Biochim Biophys Acta 1129:323–327

    Article  PubMed  CAS  Google Scholar 

  • Karnati S, Baumgart-Vogt E (2008) Peroxisomes in mouse and human lung: their involvement in pulmonary lipid metabolism. Histochem Cell Biol 130:719–740

    Article  PubMed  CAS  Google Scholar 

  • Karnati S, Baumgart-Vogt E (2009) Peroxisomes in airway epithelia and future prospects of these organelles for pulmonary cell biology. Histochem Cell Biol 131:447–454

    Article  PubMed  CAS  Google Scholar 

  • Kurisu M, Morita M, Kashiwayama Y, Yokota S, Hayashi H, Sakai Y, Ohkuma S, Nishimura M, Imanaka T (2003) Existence of catalase-less peroxisomes in Sf21 insect cells. Biochem Biophys Res Commun 306:169–176

    Article  PubMed  CAS  Google Scholar 

  • Lalwani ND, Reddy MK, Mangkornkanok-Mark M, Reddy JK (1981) Induction, immunochemical identity and immunofluorescence localization of an 80 000-molecular-weight peroxisome-proliferation-associated polypeptide (polypep-tide PPA-80) and peroxisomal enoyl-CoA hydratase of mouse liver and renal cortex. Biochem J 198:177–186

    PubMed  CAS  Google Scholar 

  • Leclercq S, Skrzypski J, Courvoisier A, Gondcaille C, Bonnetain F, André A, Chardigny JM, Bellenger S, Bellenger J, Narce M, Savary S (2008) Effect of dietary polyunsaturated fatty acids on the expression of peroxisomal ABC transporters. Biochimie 90:1602–1607

    Article  PubMed  CAS  Google Scholar 

  • Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ, Walton PA, Terlecky SR (2002) Peroxisome senescence in human fibroblasts. Mol Biol Cell 13:4243–4255

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002a) PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365

    Article  PubMed  CAS  Google Scholar 

  • Li X, Baumgart E, Dong GX, Morrell JC, Jimenez-Sanchez G, Valle D, Smith KD, Gould SJ (2002b) PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 22:8226–8240

    Article  PubMed  CAS  Google Scholar 

  • Litwin JA, Yokota S, Hashimoto T, Fahimi HD (1984) Light microscopic immunocytochemical demonstration of peroxisomal enzymes in Epon sections. Histochemistry 81:15–22

    Article  PubMed  CAS  Google Scholar 

  • Litwin JA, Völkl A, Stachura J, Fahimi HD (1988) Detection of peroxisomes in human liver and kidney fixed with formalin and embedded in paraffin: the use of catalase and lipid beta-oxidation enzymes as immunocytochemical markers. Histochem J 20:165–173

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Björkman J, Urquhart A, Wanders RJ, Crane DI, Gould SJ (1999) PEX13 is mutated in complementation group 13 of the peroxisome-biogenesis disorders. Am J Hum Genet 65:621–634

    Article  PubMed  CAS  Google Scholar 

  • Maxwell M, Bjorkman J, Nguyen T, Sharp P, Finnie J, Paterson C, Tonks I, Paton BC, Kay GF, Crane DI (2003) Pex13 inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 23:5947–5957

    Article  PubMed  CAS  Google Scholar 

  • Meshnick SR, Chang KP, Cerami A (1977) Heme lysis of the bloodstream forms of Trypanosoma brucei. Biochem Pharmacol 26:1923–1928

    Article  PubMed  CAS  Google Scholar 

  • Mooradian BA, Cutler LS (1978) Developmental distribution of microperoxisomes in the rat submandibular gland. J Histochem Cytochem 26:989–999

    Article  PubMed  CAS  Google Scholar 

  • Moreno S, Nardacci R, Cimini A, Cerù MP (1999) Immunocytochemical localization of d-amino acid oxidase in rat brain. J Neurocytol 28:169–185

    Article  PubMed  CAS  Google Scholar 

  • Müller CC, Nguyen TH, Ahlemeyer B, Meshram M, Santrampurwala N, Cao S, Sharp P, Fietz PB, Baumgart-Vogt E, Crane DI (2011) PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress. Dis Model Mech 4:104–119

    Article  PubMed  Google Scholar 

  • Nagase T, Shimozawa N, Takemoto Y, Suzuki Y, Komori M, Kondo N (2004) Peroxisomal localization in the developing mouse cerebellum: implications for neuronal abnormalities related to deficiencies in peroxisomes. Biochim Biophys Acta 1671:26–33

    Article  PubMed  CAS  Google Scholar 

  • Nardacci R, Falciatori I, Moreno S, Stefanini S (2004) Immunohistochemical localization of peroxisomal enzymes during rat embryonic development. J Histochem Cytochem 52:423–436

    Article  PubMed  CAS  Google Scholar 

  • Nenicu A, Luers GH, Kovacs WJ, Bergmann M, Baumgart-Vogt E (2007) Peroxisomes in human and mouse testis: differential expression of peroxisomal proteins in germ cells and distinct somatic cell types of the testis. Biol Rep 77:1060–1072

    Article  CAS  Google Scholar 

  • Nguyen T, Bjorkman J, Paton BC, Crane DI (2006) Failure of microtubule-mediated peroxisome division and trafficking in disorders with reduced peroxisome abundance. J Cell Sci 119:636–645

    Article  PubMed  CAS  Google Scholar 

  • Novikoff AB, Goldfischer S (1969) Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J Histochem Cytochem 17:675–680

    Article  PubMed  CAS  Google Scholar 

  • Oliveira ME, Reguenga C, Gouveia AM, Guimaraes CP, Schliebs W, Kunau WH, Silva MT, Sá-Miranda C, Azevedo JE (2002) Mammalian Pex14p: membrane topology and characterisation of the Pex14p–Pex14p interaction. Biochim Biophys Acta 1567:13–22

    Article  PubMed  CAS  Google Scholar 

  • Pollard H, Moreau J, Aubourg P (1995) Localization of mRNAs for adrenoleukodystrophy and the 70 kDa peroxisomal (PMP70) proteins in the rat brain during post-natal development. J Neurosci Res 42:433–437

    Article  PubMed  CAS  Google Scholar 

  • Rhodin J (1954) Correlation of ultrastructural organization and function in normal and experimentally changed proximal tubule cells of the mouse kidney. Doctorate Thesis. Karolinska Institutet, Stockholm

  • Roels F, Cornelis A (1989) Heterogeneity of catalase staining in human hepatocellular peroxisomes. J Histochem Cytochem 37:331–337

    Article  PubMed  CAS  Google Scholar 

  • Roels F, Goldfischer S (1979) Cytochemistry of human catalase. The demonstration of hepatic and renal peroxisomes by a high temperature procedure. J Histochem Cytochem 27:1471–1477

    Article  PubMed  CAS  Google Scholar 

  • Roels F, de Coster W, Goldfischer S (1977) Cytochemical demonstration of extraperoxisomal catalase. II. Liver of rhesus monkey and guinea pig. J Histochem Cytochem 25:157–160

    Article  PubMed  CAS  Google Scholar 

  • Roels F, Espeel M, De Craemer D (1991) Liver pathology and immunocytochemistry in congenital peroxisomal diseases: a review. J Inherit Metab Dis 14:853–875

    Article  PubMed  CAS  Google Scholar 

  • Romeis B (2010) Präparationstechniken. In: Mulisch M, Welsch U (eds) Mikroskopische Technik, 18th edn. Springer, Heidelberg, pp 87–104

    Google Scholar 

  • Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ (2000) PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 148:931–944

    Article  PubMed  CAS  Google Scholar 

  • Santos MJ, Imanaka T, Shio H, Small GM, Lazarow PB (1988) Peroxisomal membrane ghosts in Zellweger syndrome—aberrant organelle assembly. Science 239:1536–1538

    Article  PubMed  CAS  Google Scholar 

  • Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA, Inestrosa NC (2005) Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J Biol Chem 280:1057–1068

    Google Scholar 

  • Schad A, Fahimi HD, Völkl A, Baumgart E (2003) Expression of catalase mRNA and protein in adult rat brain: detection by nonradioactive in situ hybridization with signal amplification by catalyzed reporter deposition (ISH-CARD) and immunohistochemistry (IHC)/immunofluorescence (IF). J Histochem Cytochem 51:751–760

    Article  PubMed  CAS  Google Scholar 

  • Schliebs W, Würtz C, Kunau WH, Veenhuis M, Rottensteiner H (2006) A eukaryote without catalase-containing microbodies: Neurospora crassa exhibits a unique cellular distribution of its four catalases. Eukaryot Cell 5:1490–1502

    Article  PubMed  CAS  Google Scholar 

  • Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Itoh R, Hirono Y, Otera H, Ghaedi K, Tateishi K, Tamura S, Okumoto K, Harano T, Mukai S, Fujiki Y (1999) The peroxin Pex14p. cDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis. J Biol Chem 274:12593–12604

    Article  PubMed  CAS  Google Scholar 

  • Shimozawa N, Suzuki Y, Tomatsu S, Tsukamoto T, Osumi T, Fujiki Y, Kamijo K, Hashimoto T, Kondo N, Orii T (1996) Correction by gene expression of biochemical abnormalities in fibroblasts from Zellweger patients. Pediatr Res 39:812–815

    Article  PubMed  CAS  Google Scholar 

  • Thiemann M, Schrader M, Völkl A, Baumgart E, Fahimi HD (2000) Interaction of peroxisomes with microtubules. In vitro studies using a novel peroxisome–microtubule binding assay. Eur J Biochem 267:6264–6275

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1983) Present state of immunocryoultramicrotomy. J Histochem Cytochem 31:164–167

    Article  PubMed  CAS  Google Scholar 

  • Usuda N, Reddy MK, Hashimoto T, Rao MS, Reddy JK (1988a) Tissue specificity and species differences in the distribution of urate oxidase in peroxisomes. Lab Invest 58:100–111

    PubMed  CAS  Google Scholar 

  • Usuda N, Usman MI, Reddy MK, Hashimoto T, Reddy JK, Rao MS (1988b) Immunocytochemical localization of urate oxidase, fatty acyl-CoA oxidase, and catalase in bovine kidney peroxisomes. J Histochem Cytochem 36:253–258

    Article  PubMed  CAS  Google Scholar 

  • Van Veldhoven PP, Brees C, Mannaerts GP (1991) d-Aspartate oxidase, a peroxisomal enzyme in liver of rat and man. Biochim Biophys Acta 1073:203–208

    Article  PubMed  Google Scholar 

  • Völkl A, Baumgart E, Fahimi HD (1988) Localization of urate oxidase in the crystalline cores of rat liver peroxisomes by immunocytochemistry and immunoblotting. J Histochem Cytochem 36:329–336

    Article  PubMed  Google Scholar 

  • Will GK, Soukupova M, Hong X, Erdmann KS, Kiel JA, Dodt G, Kunau WH, Erdmann R (1999) Identification and characterization of the human orthologue of yeast Pex14p. Mol Cell Biol 19:2265–2277

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Fahimi HD (1987) Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: evidence of interconnections between heterogeneous segments. J Cell Biol 105:713–722

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Völkl A, Hashimoto T, Fahimi HD (1988) Catalase in guinea pig hepatocytes is localized in cytoplasm, nuclear matrix and peroxisomes. Eur J Cell Biol 46:129–135

    PubMed  CAS  Google Scholar 

  • Yokota S (1973) Studies on mouse liver urate oxidase. I. Immunofluorescent localization of urate oxidase in mouse liver. Histochemie 36:21–27

    Article  PubMed  CAS  Google Scholar 

  • Yokota S, Fahimi HD (1981) Immunocytochemical localization of catalase in rat liver. J Histochem Cytochem 29:805–812

    Article  PubMed  CAS  Google Scholar 

  • Yokota S, Nagata T (1974) Ultrastructural localization of catalase on ultracryotomic sections of mouse liver by ferritin-conjugated antibody technique. Histochemistry 40:165–174

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Wang F, Zhang K, Zhang Y, Yang K, Cheng M, Song C, Jin B (2012) Immunocytochemical and immunohistochemical application of monoclonal antibodies against peroxisomal biogenesis factor 14. Hybridoma 31:142–145

    Article  PubMed  CAS  Google Scholar 

  • Zaar K (1996) Light and electron microscopic localization of d-aspartate oxidase in peroxisomes of bovine kidney and liver: an immunocytochemical study. J Histochem Cytochem 44:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Zaar K, Fahimi HD (1991) Immunoelectron microscopic localization of the isozymes of l-alpha-hydroxyacid oxidase in renal peroxisomes of beef and sheep: evidence of distinct intraorganellar subcompartmentation. J Histochem Cytochem 39:801–808

    Article  PubMed  CAS  Google Scholar 

  • Zaar K, Völkl A, Fahimi HD (1989) d-Aspartate oxidase in rat, bovine and sheep kidney cortex is localized in peroxisomes. Biochem J 261:233–238

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Bianca Pfeiffer, Magdalena Gottwald, and Elke Rodenberg-Frank for excellent technical assistance in the morphology laboratory as well as Dr. Wiebke Möbius, Max-Planck-Institute for Experimental Medicine, Göttingen, for the donation of rat liver tissue for cryo-immuno-electron microscopy for catalase and Jessica and Michelle Woods for proofreading the manuscript. The data of this manuscript have been published as part of the doctoral thesis of Phillip Grant in electronic form (Online library JLU, 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eveline Baumgart-Vogt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2013_1133_MOESM1_ESM.jpg

Supplemental Figure 1: A-H. Comparison of antibodies against mouse full-length PEX14 (self-created) and human full-length PEX14 protein (commercially available) in mouse and human cell lines and tissues. Parallel immunostainings for PEX14 were performed on mouse (Hepa 1-6; A, B) and human (HepG2; C, D) hepatoma cells, mouse neocortex (E, F) and autolytic submandibular gland tissue from human donors (H, I) using the anti-PEX14 antibody from Denis Crane (DC) and Millipore (MP) at the indicated dilutions. I-J. Comparison of staining patterns using the anti-catalase antibody from Denis Crane (DC, I) and the anti-ABCD3 antibody from Alfred Völkl (AV, J) to that for PEX14 (G, H) in paraffin sections of the autolytic human submandibular gland. As with the PEX14 antigen, the peroxisomal catalase antigen is conserved and peroxisomes can be distinguished clearly. The autolysis of the tissue is most obvious in a capillary with leaky autofluorescent erythrocytes (asterisks). In contrast to the PEX14 and catalase antigens, the ABCD3 antigen is degraded during progressive autolysis. Arrows indicate cells with TOTO-3-iodide-labeled DNA in leaky mitochondria. A few peroxisomes with a weak staining can be identified at a higher magnification. (JPEG 2921 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, P., Ahlemeyer, B., Karnati, S. et al. The biogenesis protein PEX14 is an optimal marker for the identification and localization of peroxisomes in different cell types, tissues, and species in morphological studies. Histochem Cell Biol 140, 423–442 (2013). https://doi.org/10.1007/s00418-013-1133-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1133-6

Keywords

Navigation