Skip to main content
Log in

P2Y purinoceptors induce changes in intracellular calcium in acinar cells of rat lacrimal glands

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Adenosine 5′-triphosphate (ATP) is an extracellular signal that regulates various cellular functions. Cellular secretory activities are enhanced by ATP as well as by cholinergic and adrenergic stimuli. The present study aimed to determine which purinoceptors play a role in ATP-induced changes in the intracellular concentration of calcium ions ([Ca2+]i) and in the fine structure of acinar cells of rat lacrimal glands. ATP induced exocytotic structures, vacuolation and an increase in [Ca2+]i in acinar cells. The removal of extracellular Ca2+ or the use of Ca2+ channel blockers partially inhibited the ATP-induced [Ca2+]i increase. U73122 (an antagonist of PLC) and heparin (an antagonist of IP3 receptors) did not completely inhibit the ATP-induced [Ca2+]i increase. P1 purinoceptor agonists did not induce any changes in [Ca2+]i, whereas suramin (an antagonist of P2 receptors) completely inhibited ATP-induced changes in [Ca2+]i. A P2Y receptor agonist, 2-MeSATP, induced a strong increase in [Ca2+]i, although UTP (a P2Y2,4,6 receptor agonist) had no effect, and reactive blue 2 (a P2Y receptor antagonist) resulted in partial inhibition. The potency order of ATP analogs (2-MeSATP > ATP ⋙ UTP) suggested that P2Y1 played a significant role in the cellular response to ATP. BzATP (a P2X7 receptor agonist) induced a small increase in [Ca2+]i, but α,β-meATP (a P2X1,3 receptor agonist) had no effect. RT-PCR indicated that P2X2,3,4,5,6,7 and P2Y1,2,4,12,14 are expressed in acinar cells. In conclusion, the response of acinar cells to ATP is mediated by P2Y (especially P2Y1) as well as by P2X purinoceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    Article  PubMed  CAS  Google Scholar 

  • Abbracchio MP, Burnstock G (1998) Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–145

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signaling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  • Born GV, Kratzer MA (1984) Source and concentration of extracellular adenosine triphosphate during haemostasis in rats, rabbits and man. J Physiol 354:419–429

    PubMed  CAS  Google Scholar 

  • Brändle U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg JP, Plinkert PK, Zenner HP, Glowatzki E (1997) Desensitization of the P2X(2) receptor controlled by alternative splicing. FEBS Lett 404:294–298

    Article  PubMed  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York, pp 107–118

    Google Scholar 

  • Burnstock G (1995) Noradrenaline and ATP: cotransmitters and neuromodulators. J Physiol Pharmacol 46:365–384

    PubMed  CAS  Google Scholar 

  • Burnstock G (1996) P2 purinoceptors: historical perspective and classification. Ciba Found Symp 198:1–34

    PubMed  CAS  Google Scholar 

  • Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127–1139

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  PubMed  CAS  Google Scholar 

  • Dartt DA (1989) Signal transduction and control of lacrimal gland protein secretion: a review. Curr Eye Res 8:619–636

    Article  PubMed  CAS  Google Scholar 

  • Dartt DA (1994) Regulation of tear secretion. Adv Exp Med Biol 350:1–9

    Article  PubMed  CAS  Google Scholar 

  • Dartt DA (2009) Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res 28:155–177

    Article  PubMed  Google Scholar 

  • Dartt DA, Hodges RR (2011a) Cholinergic agonists activate P2X7 receptors to stimulate protein secretion by the rat lacrimal gland. Invest Ophthalmol Vis Sci 52:3381–3390

    Article  PubMed  CAS  Google Scholar 

  • Dartt DA, Hodges RR (2011b) Interaction of {alpha}1D-Adrenergic and P2X7 receptors in the rat lacrimal gland and the effect on intracellular [Ca2+] and protein secretion. Invest Ophthalmol Vis Sci 52:5720–5729

    Article  PubMed  CAS  Google Scholar 

  • Doctor RB, Matzakos T, McWilliams R, Johnson S, Feranchak AP, Fitz JG (2005) Purinergic regulation of cholangiocyte secretion: identification of a novel role for P2X receptors. Am J Physiol Gastrointest Liver Physiol 288:G779–G786

    Article  PubMed  CAS  Google Scholar 

  • Dubyak GR (1991) Signal transduction by P2-purinergic receptors for extracellular ATP. Am J Respir Cell Mol Biol 4:295–300

    PubMed  CAS  Google Scholar 

  • Dubyak GR (2007) Go it alone no more—P2X7 joins the society of heteromeric ATP-gated receptor channels. Mol Pharmacol 72:1402–1405

    Article  PubMed  CAS  Google Scholar 

  • Dubyak GR, El-Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577–C606

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G, Dubyak GR, Harden TK, Jacobson KA, Schwabe U, Williams M (1997) Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci 18:79–82

    Article  PubMed  CAS  Google Scholar 

  • Fujihara T, Murakami T, Fujita H, Nakamura M, Nakata K (2001) Improvement of corneal barrier function by the P2Y(2) agonist INS365 in a rat dry eye model. Invest Ophthalmol Vis Sci. 42:96–100

    PubMed  CAS  Google Scholar 

  • Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Abbracchio MP (2004) Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem Pharmacol 68:113–124

    Article  PubMed  CAS  Google Scholar 

  • Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    PubMed  CAS  Google Scholar 

  • Gromada J, Jørgensen TD, Dissing S (1995) The release of intracellular Ca2+ in lacrimal acinar cells by alpha-, beta-adrenergic and muscarinic cholinergic stimulation: the roles of inositol triphosphate and cyclic ADP-ribose. Pflügers Arch 429:751–761

    Article  PubMed  CAS  Google Scholar 

  • Hodges RR, Dartt DA (2003) Regulatory pathways in lacrimal gland epithelium. Int Rev Cytol 231:129–196

    Article  PubMed  CAS  Google Scholar 

  • Hodges RR, Dicker DM, Rose PE, Dartt DA (1992) α1-Adrenergic and cholinergic agonists use separate signal transduction pathways in lacrimal gland. Am J Physiol 262:G1087–G1096

    PubMed  CAS  Google Scholar 

  • Hodges RR, Vrouvlianis J, Shatos MA, Dartt DA (2009) Characterization of P2X7 purinergic receptors and their function in rat lacrimal gland. Invest Ophthalmol Vis Sci 50:5681–5689

    Article  PubMed  Google Scholar 

  • Hodges RR, Vrouvlianis J, Scott R, Dartt DA (2011) Identification of P2X3 and P2X7 purinergic receptors activated by ATP in rat lacrimal gland. Invest Ophthalmol Vis Sci 52:3254–3263

    Article  PubMed  CAS  Google Scholar 

  • Johansson PA, Burnstock G, Dziegielewska KM, Guida E, McIntyre P, Saunders NR (2007) Expression and localization of P2 nucleotide receptor subtypes during development of the lateral ventricular choroid plexus of the rat. Eur J Neurosci 25:3319–3331

    Article  PubMed  CAS  Google Scholar 

  • Kaja S, Hilgenberg JD, Rybalchenko V, Medina-Ortiz WE, Gregg EV, Koulen P (2011) Polycystin-2 expression and function in adult mouse lacrimal acinar cells. Invest Ophthalmol Vis Sci 52:5605–5611

    Article  PubMed  CAS  Google Scholar 

  • Koulen P, Thrower EC (2001) Pharmacological modulation of intracellular Ca(2+) channels at the single-channel level. Mol Neurobiol 24:65–86

    Article  PubMed  CAS  Google Scholar 

  • Kunapuli SP, Daniel JL (1998) P2 receptor subtypes in the cardiovascular system. Biochem J 336:513–523

    PubMed  CAS  Google Scholar 

  • Kwan C-Y, Putney JW Jr (1990) Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. J Biol Chem 265:678–684

    PubMed  CAS  Google Scholar 

  • Leipziger J (2003) Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol. 284:F419–F432

    PubMed  CAS  Google Scholar 

  • Matsuura M, Saino T, Satoh Y (2004) Response to ATP is accompanied by a Ca2+ influx via P2X purinoceptors in the coronary arterioles of golden hamsters. Arch Histol Cytol 67:95–105

    Article  PubMed  CAS  Google Scholar 

  • Mauduit P, Jammes H, Rossignol B (1993) M3 muscarinic acetylcholine receptor coupling to PLC in rat exorbital lacrimal acinar cells. Am J Physiol 264:C1550–C1560

    PubMed  CAS  Google Scholar 

  • McConalogue K, Todorov L, Furness JB, Westfall DP (1996) Direct measurement of the release of ATP and its major metabolites from the nerve fibres of the guinea-pig Taenia coli. Clin Exp Pharmacol Physiol 23:807–812

    Article  PubMed  CAS  Google Scholar 

  • Medina-Ortiz WE, Gregg EV, Brun-Zinkernagel AM, Koulen P (2007) Identification and functional distribution of intracellular ca channels in mouse lacrimal gland acinar cells. Open Ophthalmol J 1:8–16

    Article  PubMed  CAS  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  • Novak I, Jans IM, Wohlfahrt L (2010) Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands. J Physiol 588:3615–3627

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Ryan LM, Rachow JW, McCarty BA, McCarty DJ (1996) Adenosine triphosphate levels in human plasma. J Rheumatol 23:214–219

    PubMed  CAS  Google Scholar 

  • Saino T, Matsuura M, Satoh Y (2002) Comparison of the effect of ATP on intracellular calcium ion dynamics between rat testicular and cerebral arteriole smooth muscle cells. Cell Calcium 32:155–165

    Article  Google Scholar 

  • Satoh Y, Oomori Y, Ishikawa K, Ono K (1994) Configuration of myoepithelial cells in various exocrine glands of guinea pigs. Anat Embryol 189:227–236

    Article  PubMed  CAS  Google Scholar 

  • Satoh Y, Sano K, Habara Y, Kanno T (1997) Effects of carbachol and catecholamines on ultrastructure and intracellular calcium-ion dynamics of acinar and myoepithelial cells of lacrimal glands. Cell Tissue Res 289:473–485

    Article  PubMed  CAS  Google Scholar 

  • Schwiebert EM, Zsembery A (2003) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615:7–32

    Article  PubMed  CAS  Google Scholar 

  • Sneyd J, Tsaneva-Atanasova K, Bruce JI, Straub SV, Giovannucci DR, Yule DI (2003) A model of calcium waves in pancreatic and parotid acinar cells. Biophys J 85:1392–1405

    Article  PubMed  CAS  Google Scholar 

  • von Kügelgen I, Starke K (1991) Noradrenaline-ATP co-transmission in the sympathetic nervous system. Trends Pharmacol Sci 12:319–324

    Article  Google Scholar 

  • Yang J, McBride S, Mak DO, Vardi N, Palczewski K, Haeseleer F, Foskett JK (2002) Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca(2+) release channels. Proc Natl Acad Sci USA 99:7711–7716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our thanks to K. Kumagai, Department of Anatomy, for his technical assistance. This work was supported by research grants from the Ministry of Education, Culture and Science of Japan (T.S.; 21590200) and from the Promotion and Mutual Aid Corporation for Private Schools of Japan. Some of this work was performed at the Advanced Medical Science Center of Iwate Medical University, which also provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Saino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamada, Y., Saino, T., Oikawa, M. et al. P2Y purinoceptors induce changes in intracellular calcium in acinar cells of rat lacrimal glands. Histochem Cell Biol 137, 97–106 (2012). https://doi.org/10.1007/s00418-011-0885-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0885-0

Keywords

Navigation