Skip to main content

Advertisement

Log in

HMGB1 in ischemic and non-ischemic liver after selective warm ischemia/reperfusion in rat

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

High mobility group box 1 (HMGB1) acts as an early mediator in inflammation and organ injury. Ischemia reperfusion (I/R) injury induces HMGB1 translocation and expression in ischemic areas. However, it is unknown whether selective warm liver I/R injury also induces the expression of HMGB1 in non-ischemic lobes. The present study aimed to test the hypothesis that selective liver I/R injury also causes HMGB1 translocation and up-regulates its expression in non-ischemic liver areas. In the present study, selective I/R injury was induced by clamping the median and left lateral liver lobes for 90 min followed by 0.5, 6 and 24 h reperfusion. We used male inbred Lewis rats; six animals for each point in time and six animals for the normal control group. Selective hepatic I/R injury induced morphological changes not only in ischemic lobes but also in non-ischemic lobes. HMGB1 translocation and expression was increased in a time-dependent manner in the ischemic lobes, and increased in with delayed onset in the non-ischemic lobes. Serum HMGB1 levels were increased after reperfusion. Furthermore, liver I/R injury up-regulated the expression of HMGB1 receptors (Toll-like receptor 4 and receptor for advanced glycation end products and pro-inflammatory cytokines (Tumor necrosis factor-alpha and interleukin-6) in both ischemic lobes, however, the up-regulation of these cytokines was more prominent in the ischemic lobes. In conclusion, selective warm I/R induces a substantial “sympathetic/bystander” effect on the non-ischemic lobes in terms of HMGB1 translocation and local cytokine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, Tracey KJ (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    Article  PubMed  CAS  Google Scholar 

  • Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairbaurl H, Nawroth PP, Remppis A, Katus HA, Bierhaus A (2008) High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 117:3216–3226

    Article  PubMed  CAS  Google Scholar 

  • Behrends M, Hirose R, Park YH, Tan V, Dang K, Xu F, Park SH, Niemann CU (2008) Remote renal injury following partial hepatic ischemia/reperfusion injury in rats. J Gastrointest Surg 12:490–495

    Article  PubMed  Google Scholar 

  • Bell CW, Jiang W, Reich CF III, Pisetsky DS (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:C1318–C1325

    Article  PubMed  CAS  Google Scholar 

  • Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    Article  PubMed  CAS  Google Scholar 

  • Bianchi ME, Manfredi AA (2007) High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 220:35–46

    Article  PubMed  CAS  Google Scholar 

  • Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560

    Article  PubMed  CAS  Google Scholar 

  • Chavakis T, Bierhaus A, Nawroth PP (2004) RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect 6:1219–1225

    Article  PubMed  CAS  Google Scholar 

  • Clavien PA, Rudiger HA, Selzner M (2001) Mechanism of hepatocyte death after ischemia: apoptosis versus necrosis. Hepatology 33:1555–1557

    Article  PubMed  CAS  Google Scholar 

  • Colletti LM, Remick DG, Burtch GD, Kunkel SL, Strieter RM, Campbell DA Jr (1990) Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J Clin Invest 85:1936–1943

    Article  PubMed  CAS  Google Scholar 

  • Colletti LM, Kunkel SL, Walz A, Burdick MD, Kunkel RG, Wilke CA, Strieter RM (1996) The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat. Hepatology 23:506–514

    Article  PubMed  CAS  Google Scholar 

  • Dirsch O, Madrahimov N, Chaudri N, Deng M, Madrahimova F, Schenk A, Dahmen U (2008) Recovery of liver perfusion after focal outflow obstruction and liver resection. Transplantation 85:748–756

    Article  PubMed  Google Scholar 

  • Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P (2005) HMGB1: guiding immunity from within. Trends Immunol 26:381–387

    Article  PubMed  CAS  Google Scholar 

  • Fondevila C, Busuttil RW, Kupiec-Weglinski JW (2003) Hepatic ischemia/reperfusion injury—a fresh look. Exp Mol Pathol 74:86–93

    Article  PubMed  CAS  Google Scholar 

  • Hoppe G, Talcott KE, Bhattacharya SK, Crabb JW, Sears JE (2006) Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp Cell Res 312:3526–3538

    Article  PubMed  CAS  Google Scholar 

  • Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270:25752–25761

    Article  PubMed  CAS  Google Scholar 

  • Ilmakunnas M, Tukiainen EM, Rouhiainen A, Rauvala H, Arola J, Nordin A, Makisalo H, Hockerstedt K, Isoniemi H (2008) High mobility group box 1 protein as a marker of hepatocellular injury in human liver transplantation. Liver Transpl 14:1517–1525

    Article  PubMed  Google Scholar 

  • Ito I, Fukazawa J, Yoshida M (2007) Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 282:16336–16344

    Article  PubMed  CAS  Google Scholar 

  • Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, Bianchi ME, Wang H, Chu WM (2007) A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110:1970–1981

    Article  PubMed  CAS  Google Scholar 

  • Jaeschke H (2003) Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 284:G15–G26

    PubMed  CAS  Google Scholar 

  • Jaeschke H, Lemasters JJ (2003) Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125:1246–1257

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Lim CM, Yu YM, Lee JK (2008) Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J Neurosci Res 86:1125–1131

    Article  PubMed  CAS  Google Scholar 

  • Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A (2008) HMGB1: endogenous danger signaling. Mol Med 14:476–484

    Article  PubMed  CAS  Google Scholar 

  • Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289

    Article  PubMed  CAS  Google Scholar 

  • Liu A, Jin H, Dirsch O, Deng M, Huang H, Brocker-Preuss M, Dahmen U (2010) Release of danger signals during ischemic storage of the liver: a potential marker of organ damage? Mediators Inflamm 2010:436145

    Article  PubMed  Google Scholar 

  • Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  PubMed  CAS  Google Scholar 

  • Martin M, Mory C, Prescher A, Wittekind C, Fiedler M, Uhlmann D (2010) Protective effects of early CD4(+) T cell reduction in hepatic ischemia/reperfusion injury. J Gastrointest Surg 14:511–519

    Article  PubMed  Google Scholar 

  • Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Pina E, Geller DA (2008) Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res 147:153–159

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, Beltrame M, Bianchi ME (2001) New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 20:4337–4340

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Ronfani L, Bianchi ME (2004) Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med 255:332–343

    Article  PubMed  CAS  Google Scholar 

  • Mullins GE, Sunden-Cullberg J, Johansson AS, Rouhiainen A, Erlandsson-Harris H, Yang H, Tracey KJ, Rauvala H, Palmblad J, Andersson J, Treutiger CJ (2004) Activation of human umbilical vein endothelial cells leads to relocation and release of high-mobility group box chromosomal protein 1. Scand J Immunol 60:566–573

    Article  PubMed  CAS  Google Scholar 

  • Pardo M, Budick-Harmelin N, Tirosh B, Tirosh O (2008) Antioxidant defense in hepatic ischemia-reperfusion injury is regulated by damage-associated molecular pattern signal molecules. Free Radic Biol Med 45:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY, Choe KH, Strassheim D, Pitts TM, Tracey KJ, Abraham E (2003) Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol 284:C870–C879

    PubMed  CAS  Google Scholar 

  • Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, Ishizaka A, Abraham E (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 290:C917–C924

    Article  PubMed  CAS  Google Scholar 

  • Rappaport AM (1976) The microcirculatory acinar concept of normal and pathological hepatic structure. Beitr Pathol 157:215–243

    PubMed  CAS  Google Scholar 

  • Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Muller S, Iannacone M, Traversari C, Bianchi ME, Manfredi AA (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5:825–830

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  PubMed  CAS  Google Scholar 

  • Teoh NC, Farrell GC (2003) Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol 18:891–902

    Article  PubMed  CAS  Google Scholar 

  • Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA, Billiar TR (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201:1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR, Billiar TR (2007) HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204:2913–2923

    Article  PubMed  CAS  Google Scholar 

  • Vardanian AJ, Busuttil RW, Kupiec-Weglinski JW (2008) Molecular mediators of liver ischemia and reperfusion injury: a brief review. Mol Med 14:337–345

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  PubMed  CAS  Google Scholar 

  • Wanner GA, Ertel W, Muller P, Hofer Y, Leiderer R, Menger MD, Messmer K (1996) Liver ischemia and reperfusion induces a systemic inflammatory response through Kupffer cell activation. Shock 5:34–40

    Article  PubMed  CAS  Google Scholar 

  • Weinbroum AA, Hochhauser E, Rudick V, Kluger Y, Sorkine P, Karchevsky E, Graf E, Boher P, Flaishon R, Fjodorov D, Niv D, Vidne BA (1997) Direct induction of acute lung and myocardial dysfunction by liver ischemia and reperfusion. J Trauma 43:627–633

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, Chadban SJ (2007) TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117:2847–2859

    Article  PubMed  CAS  Google Scholar 

  • Xing W, Deng M, Zhang J, Huang H, Dirsch O, Dahmen U (2009) Quantitative evaluation and selection of reference genes in a rat model of extended liver resection. J Biomol Tech 20:109–115

    PubMed  Google Scholar 

  • Youn JH, Shin JS (2006) Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol 177:7889–7897

    PubMed  CAS  Google Scholar 

  • Zeng S, Feirt N, Goldstein M, Guarrera J, Ippagunta N, Ekong U, Dun H, Lu Y, Qu W, Schmidt AM, Emond JC (2004) Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice. Hepatology 39:422–432

    Article  PubMed  CAS  Google Scholar 

  • Zeng S, Dun H, Ippagunta N, Rosario R, Zhang QY, Lefkowitch J, Yan SF, Schmidt AM, Emond JC (2009) Receptor for advanced glycation end product (RAGE)-dependent modulation of early growth response-1 in hepatic ischemia/reperfusion injury. J Hepatol 50:929–936

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported partially by the grant “Klinische Forschergruppe 117—Optimierung der Leberlebendspende” (Grant number: Da251/5-3 and 5-4, KFO117). We would like to thank Ms. Tran NgocLan for animal works and Ms. Karin Jandt for linguistic revision. Special thanks go to Prof. Marco E. Bianchi and Prof. Michael T. Lotze for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Dahmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, A., Dirsch, O., Fang, H. et al. HMGB1 in ischemic and non-ischemic liver after selective warm ischemia/reperfusion in rat. Histochem Cell Biol 135, 443–452 (2011). https://doi.org/10.1007/s00418-011-0802-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0802-6

Keywords

Navigation