Skip to main content

Advertisement

Log in

Direct visualization of intracellular calcium in rat osteoblasts by energy-filtering transmission electron microscopy

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Osteoblasts are the highly specialized bone cells responsible for matrix mineralization. Mineralization is a complex, incompletely understood, process involving intracellular calcium homeostasis. Rapid changes in ionized calcium concentration ([Ca2+]i) occur in these cells, but the intracellular distribution of total calcium, which may be involved in matrix mineralization, remains unknown. We have therefore investigated the distribution of total calcium in osteoblasts either ex vivo from rapidly mineralizing neonatal rat bones or in the same cells cultured to confluence before they had entered the mineralization phase, and without stimulation for mineralized matrix formation. All cells were examined bone-untreated (controls) or following the addition of the ionophore ionomycin that induced a large and sustained increase in [Ca2+]i. Cryomethods, quick-freezing and freeze-drying, and OsO4 vapor fixation were employed to preserve the original calcium distribution, and the preservation was verified by secondary ion mass spectrometry (SIMS). Intracellular calcium distribution was identified by energy-filtering transmission electron microscopy (EELS). Scarce calcium signals were recorded from all osteoblasts maintained in buffer (controls). Ionomycin addition resulted in the accumulation of calcium in mitochondria, and more calcium was stored in the mitochondria of osteoblasts involved in mineralization than in those of osteoblasts before mineralization. Moreover, in the former, strong calcium signals were recorded around the junctions between mitochondria and the endoplasmic reticulum. Thus EELS allowed to obtain high-resolution total calcium maps in defined intracellular structures, but only at elevated calcium levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a–c
Fig. 3a–d
Fig. 4a–f
Fig. 5
Fig. 6a–f
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramov AY, Duchen MR (2003) Actions of ionomycin, 4-BrA23187 and a novel electrogenic Ca(2+) ionophore on mitochondria in intact cells. Cell Calcium 33:101–112

    Google Scholar 

  • Ahn C C, Krivanek OL (1983) EELS Atlas, Gatan, Warrendale

  • Anderson HA (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280

    Google Scholar 

  • Beckers ALD, Gelsema ES, De Bruijn WC, Cleton-Soeteman, Van Eijk UG (1996) Quantitative electron spectroscopic imaging in bio-medicine: evaluation and application. J Microsc 183:78–88

    Article  CAS  PubMed  Google Scholar 

  • Bordat C, Bouet O, Cournot G (1998) Calcium distribution in high-pressure frozen bone cells by electron energy loss spectroscopy and electron spectroscopic imaging. Histochem Cell Biol 109:167–174

    Article  CAS  PubMed  Google Scholar 

  • Buchanan RA, Leapman RD, O’Connell MF, Reese TS, Andrews SB (1993) Quantitative scanning transmission electron microscopy of ultrathin cryosections: subcellular organelles in rapidly frozen liver and cerebellar cortex. J Struct Biol 110:244–255

    Article  CAS  PubMed  Google Scholar 

  • Collins TJ, Berridge MJ, Lipp P, Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21:1616–1627

    Article  CAS  PubMed  Google Scholar 

  • De Buijn WC, Sorber CWJ, Gelsema ES, Beckers ALD, Jonkind JF (1993) Energy filtering transmission electron microscopy of biological specimens. Scanning Microsc 7:693–709

    PubMed  Google Scholar 

  • Edelmann L, Ruf A (1996) Freeze-dried human leukocytes stabilized with uranyl acetate during low temperature embedding or with OsO4 vapor after embedding. Scanning Microsc Suppl 10:295–307

    CAS  PubMed  Google Scholar 

  • Egerton RF (1996) Electron energy loss spectroscopy in the electron microscope. Plenum, New York

  • Gomez P, Vereecke J, Himpens B (2001) Intra- and intercellular Ca2+-transient propagation in normal and high glucose solutions in ROS cells during mechanical stimulation. Cell Calcium 29:137–148

    Article  CAS  PubMed  Google Scholar 

  • Grignon N, Halpern S, Jeusset J, Briançon C, Fragu P (1997) Localization of chemical elements and isotopes in the leaf of soybean (Glycine max) by SIMS microscopy: critical choice of sample preparation procedure. J Microsc 186:51–66

    Article  CAS  Google Scholar 

  • Grohovaz F, Bossi M, Pezzati R, Meldolesi J, Tarelli FT (1996) High resolution ultrastructural mapping of total calcium: electron spectroscopic imaging/electron energy loss spectroscopy analysis of a physically/chemically processed nerve–muscle preparation. Proc Natl Acad Sci U S A 93:4799–4803

    Article  CAS  PubMed  Google Scholar 

  • Hisada A, Yoshida T, Kubota S, Nishizawa NK, Furuya M (2001) Technical advance: an automated device for cryofixation of specimens of electron microscopy using liquid helium. Plant Cell Physiol 42:885–893

    Article  CAS  PubMed  Google Scholar 

  • Ho R, Feng J, Shao Z, Somlyo AP (1999) Calcium quantitation with a parallel electron energy loss spectroscopy/cooled charge-coupled device/200 keV system. Microscopy and Microanalysis 5:17–28

    Article  CAS  PubMed  Google Scholar 

  • Hsu HH, Anderson HC (1996) Evidence of the presence of a specific ATPase responsible for ATP-initiated calcification by matrix vesicles isolated from cartilage and bone. J Biol Chem 271:26383–26388

    Article  CAS  PubMed  Google Scholar 

  • Johnson K, Jung A, Murphy A, Andreyev A, Dykens J, Terkeltaub R (2000) Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum 43:1560–1570

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen NR, Henriksen Z, Brot C, Eriksen EF, Sorensen OH, Civitelli R, Steinberg TH (2000) Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J Bone Miner Res 15:1024–1032

    CAS  PubMed  Google Scholar 

  • Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96:13807–13812

    Article  CAS  PubMed  Google Scholar 

  • Komarova SV, Ataullakhanov FI, Globus RK (2000) Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol Cell Physiol 279:C1220–C1229

    CAS  PubMed  Google Scholar 

  • Leapman RD (2003) Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J Microsc 10:5–15

    Google Scholar 

  • Leapman RD, Sun SQ, Hunt JA, Andrews SB (1994) Biological electron energy loss spectroscopy in the field-emission scanning transmission electron microscope. Scanning Microsc Suppl 8:245–258

    CAS  PubMed  Google Scholar 

  • Lian JB, Stein GS, Canalis E, Robey PG, Bosley AL (1999) Bone formation: osteoblast lineage cells, growth factors, matrix proteins, and the mineralization process. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott and Wilkins, Philadelphia, pp 20–29

  • Lieberherr M (1987) Effects of vitamin D3 metabolites on cytosolic free calcium in confluent mouse osteoblasts. J Biol Chem 262:13168–13173

    CAS  PubMed  Google Scholar 

  • Lieberherr M, Grosse B, Kachkache M, Balsan S (1993) Cell signaling and estrogens in female rat osteoblasts: a possible involvement of unconventional nonnuclear receptors. J Bone Miner Res 8:1365–1376

    CAS  PubMed  Google Scholar 

  • Monteith GR, Blaustein MP (1999) Heterogeneity of mitochondrial matrix free Ca2+: resolution of Ca2+ dynamics in individual mitochondria in situ. Am J Physiol 276:C1193–1204

    CAS  PubMed  Google Scholar 

  • Ottensmeyer FP (1984) Electron spectroscopic imaging: parallel energy filtering and microanalysis in the fixed-beam electron microscope. J Ultrastruct Res 88:121–134

    Google Scholar 

  • Pezzati R, Grohovaz F (1999) The frog neuromuscular junction revisited after quick-freezing–freeze-drying: ultrastructure, immunogold labelling and high resolution calcium mapping. Philos Trans R Soc Lond B Biol Sci 354:373–378

    Article  CAS  PubMed  Google Scholar 

  • Pezzati R, Bossi M, Podini P, Meldolesi J, Grohovaz F (1997) High-resolution calcium mapping of the endoplasmic reticulum–Golgi–exocytic membrane system. Electron energy loss imaging analysis of quick frozen–freeze dried PC12 cells. Mol Biol Cell 8:1501–1512

    CAS  PubMed  Google Scholar 

  • Pezzati R, Meldolesi J, Grohovaz F (2001) Ultra rapid calcium events in electrically stimulated frog nerve terminals. Biochem Biophys Res Commun 285:724–727

    Google Scholar 

  • Pivovarova NB, Hongpaisan J, Andrews SB, Friel DD (1999) Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics. J Neurosci 19:6372–6384

    CAS  PubMed  Google Scholar 

  • Pozzan T, Rizzuto R (2000) The renaissance of mitochondrial calcium transport. Eur J Biochem 267:5269–5273

    Google Scholar 

  • Pozzo-Miller LD, Pivovarova NB, Leapman RD, Buchanan RA, Reese TS, Andrews SB (1997) Activity-dependent calcium sequestration in dendrites of hippocampal neurons in brain slices. J Neurosci 17:8729–8738

    CAS  PubMed  Google Scholar 

  • Reimer L, Zepke U, Moesch J, Schulze-Hillert S, Ross-Messmer M, Probst W, Weimer E (1992) EELS spectroscopy. Zeiss, Oberkochen

  • Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    CAS  PubMed  Google Scholar 

  • Rizzuto R, Bastianutto C, Brini M, Murgia M, Pozzan T (1994) Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol 126:1183–1194

    CAS  PubMed  Google Scholar 

  • Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    CAS  PubMed  Google Scholar 

  • Robey PG, Boskey AL (2003) Extracellular matrix and biomineralization of bone. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Am Soc Bone Miner Res, Washington DC, pp 38–46

  • Rutter GA, Rizzuto R (2000) Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci 25:215–221

    CAS  PubMed  Google Scholar 

  • Shi SS, Andrews SB, Leapman RD (1996) Thickness measurement of hydrated and dehydrated cryosections by EELS. Microsc Res Tech 33:241–250

    Article  CAS  PubMed  Google Scholar 

  • Somlyo AP, Urbanics R, Vadasz G, Kovach AG, Somlyo AV (1985) Mitochondrial calcium and cellular electrolytes in brain cortex frozen in situ: electron probe analysis. Biochem Biophys Res Commun 132:1071–1078

    CAS  PubMed  Google Scholar 

  • Sorber CWJ, Katelaars GAM, Gelsema ES, Jonkind JF, De Bruijn WC (1991) Quantitative analysis of electron energy-loss spectra from ultrathin-sectioned biological material. I. Optimization of the backgroundfit with the use of bio-standards. J Microsc 162:23–42

    CAS  PubMed  Google Scholar 

  • Stegmann H, Wepf R, Schroder RR, Fink RH (1999) Quantification of total calcium in terminal cisternae of skinned muscle fibers by imaging electron energy-loss spectroscopy. J Muscle Res Cell Motil 20:505–515

    Article  CAS  PubMed  Google Scholar 

  • Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228

    CAS  PubMed  Google Scholar 

  • Tsai JA, Larsson O, Kindmark H (1999) Spontaneous and stimulated transients in cytoplasmic free Ca2+ in normal human osteoblast-like cells: aspects of their regulation. Biochem Biophys Res Comm 263:206–212

    Article  CAS  PubMed  Google Scholar 

  • Wang HJ, Guay G, Pogan L, Sauve R, Nabi IR (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 150:1489–1498

    Article  CAS  PubMed  Google Scholar 

  • Wong G, Cohn DV (1974) Separation of parathyroid hormone and calcitonin-sensitive cells from non-responsive bone cells. Nature 252:713–715

    CAS  PubMed  Google Scholar 

  • Yang YY, Egerton RF (1995) Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope. Micron 26:1–5

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. O. Boué (GAIB, CNAM–Paris ) for assistance in developing methods for EELS and ESI acquisitions and analysis, and to Dr. P. Gounon (INSERM, U 452, Nice, France) for help in cryofixation techniques. We thank Dr. O. Parkes for correcting the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Lieberherr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordat, C., Guerquin-Kern, JL., Lieberherr, M. et al. Direct visualization of intracellular calcium in rat osteoblasts by energy-filtering transmission electron microscopy. Histochem Cell Biol 121, 31–38 (2004). https://doi.org/10.1007/s00418-003-0601-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0601-9

Keywords

Navigation