Skip to main content
Log in

Perfusion-Perls and -Turnbull methods supplemented by DAB intensification for nonheme iron histochemistry: demonstration of the superior sensitivity of the methods in the liver, spleen, and stomach of the rat

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Perfusion-Perls and -Turnbull methods supplemented by the intensification with 3,3′-diaminobenzidine (+ DAB) enabled stronger and more extensive staining of nonheme iron than the Perls + and Turnbull + DAB methods carried out on tissue sections fixed with 10% formalin in 0.9% saline or PBS. The section- and perfusion-Perls + DAB methods are not specific for the demonstration of nonheme ferric iron but also stain nonheme ferrous iron. However, owing to its high sensitivity, the perfusion-Perls + DAB method would provide useful information about nonheme iron deposition regardless of oxidation states in normal and pathological conditions. The perfusion-Turnbull + DAB method is specifically demonstrable of nonheme ferrous iron and the results from this method showed significant stores of nonheme ferrous iron in the hepatocytes, Kupffer cells, splenic macrophages, and gastric parietal cells of the rat. Since nonheme ferrous iron is considered to be critically involved in free radical generation, the perfusion-Turnbull + DAB method would visualize such populations of cells that are at risk from free radical damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F.
Fig. 2A–F.
Fig. 3A–F.
Fig. 4. A

Similar content being viewed by others

References

  • Beinert H, Kennedy MC, Stout CD (1996) Aconitase as ironsulfur protein, enzyme and iron-regulatory protein. Chem Rev 96:2335–2373

    CAS  PubMed  Google Scholar 

  • Chisolm BM III, Hazen SL, Fox PL, Cathcart MK (1999) The oxidation of lipoproteins by monocytes-macrophages. J Biol Chem 274:25959–25962

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE (1999) Nitric oxide and iron proteins. Biochim Biophys Acta 1411:290–309

    Article  CAS  PubMed  Google Scholar 

  • Cooper PJ, Iancu TC, Ward RJ, Guttridge KM, Peters TJ (1988) Quantitative analysis of immunogold labelling for ferritin in liver from control and iron-overloaded rats. Histochem J 20:499–509

    CAS  PubMed  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

  • Crichton RR, Ward RJ (1992) Iron metabolism: new perspectives in view. Biochemistry 31:11255–11264

    CAS  PubMed  Google Scholar 

  • Cunha FQ, Assreuy J, Moncada S, Liew FY (1993) Phagocytosis and induction of nitric oxide synthase in murine macrophages. Immunology 79:408–411

    CAS  PubMed  Google Scholar 

  • Feng X-L, Usui H, Fujita T, Ichikawa T, Katagiri T, Washiyama K, Kumanishi T (1998) Postnatal developmental changes in NSE and NNE mRNA expression in the rat pineal gland: in situ hybridization histochemistry. J Pineal Res 24:108–116

    CAS  PubMed  Google Scholar 

  • Fontecave M (1998) Ribonucleotide reductase and radical reactions. Cell Mol Life Sci 54:684–695

    Article  CAS  PubMed  Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology of disease, free radicals and tissue injury. Lab Invest 47:412–426

    CAS  PubMed  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63:793–807

    Google Scholar 

  • Gross SS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769

    CAS  PubMed  Google Scholar 

  • Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 23:783–792

    Article  CAS  PubMed  Google Scholar 

  • Monteiro HP, Vile GF, Winterbourn CC (1989) An iron chelator is not required for reductive iron release from ferritin by radical generating system. Free Radic Res Commun 7:33−35

    CAS  PubMed  Google Scholar 

  • Moos T, Møllgård K (1993) A sensitive post-DAB enhancement technique for demonstration of iron in the central nervous system. Histochemistry 99:471–475

    CAS  PubMed  Google Scholar 

  • Morris CM, Candy AE, Bloxham CA, Edwardson JA (1992) Histochemical distribution of non-haem iron in the human brain. Acta Anat 144:235–257

    CAS  Google Scholar 

  • Nishimura Y (1910) Vergleichende Untersuchungen über die mikrochemische Eisenreaktion in menschilichen Leben. Zentralbl Allg Pathol Pathol Anat 21:10–18

    Google Scholar 

  • Nyguen-Legros J, Bizot J, Bolesse M, Policani J-P (1980) "Noir de diaminobenzidine": une nouvelle méthode histochimique de révélation du fen exogéne. Histochemistry 66:239–244

    CAS  PubMed  Google Scholar 

  • O'Connell MJ, Ward RJ, Baum H, Peters TJ (1985) The role of iron in ferritin- and haemosiderin-mediated lipid peroxidation in liposomes. Biochem J 229:135–139

    CAS  PubMed  Google Scholar 

  • Okamoto K (1937) Über das Gewebseisen. Acta Scholae Med Kioto 20:413–561

    CAS  Google Scholar 

  • Pearse AGE (1985) Inorganic constituents and foreign substances. In: Histochemistry, theoretical and applied, vol 2. Analytical technology. Churchill Livingstone, Edinburgh, pp 973–1033

  • Perl DP, Good PF (1992) Comparative techniques for determining cellular iron distribution in brain tissues. Ann Neurol 32:S76–S81

    CAS  PubMed  Google Scholar 

  • Petrat F, De Groot H, Rauen U (2001) Subcellular distribution of chelatable iron: a laser scanning microscopic study in isolated hepatocytes and liver endothelial cells. Biochem J 356:61–69

    Article  CAS  PubMed  Google Scholar 

  • Petrat F, Weisheit D, Lensen M, De Groot H, Sustmann R, Rauen U (2002) Selective determination of mitochondrial chelatable iron in viable cells with a new fluorescent sensor. Biochem J 362:137–147

    Article  CAS  PubMed  Google Scholar 

  • Pool CW, Buijs RM, Swaab DF, Boer GJ, Van Leeuwen FW (1983) On the way to a specific immunocytochemical localization. In: Cuello AC (ed) IBRO handbook series: methods in the neurosciences, vol 3. Immunohistochemistry. Wiley, Chichester, pp 1–46

  • Snook T (1964) Studies on the perifollicular region of the rat's spleen. Anat Rec 148:149–159

    CAS  Google Scholar 

  • Straus W (1971) Inhibition of peroxidase by methanol and by methanol–nitroferricyanide for use in immunoperoxidase procedures. J Histochem Cytochem 19:682–688

    CAS  PubMed  Google Scholar 

  • Thomas CE, Aust SD (1986) Reductive release of iron from ferritin by cation free radicals of paraquat and other bipyridyls. J Biol Chem 261:13064–13070

    CAS  PubMed  Google Scholar 

  • Thomas CE, Morehouse LA, Aust SD (1985) Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem 260:3275–3280

    CAS  PubMed  Google Scholar 

  • Yu S, Iwatsuki H, Ichinohe N, Mori F, Shoumura K (2001) 'In vivo perfusion Turnbull's reaction' for Fe (II) histochemistry in non-anoxic/non-ischemic and anoxic/ischemic cat brains. Neurosci Lett 308:79–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid (14657123) from the Ministry of Education, Science, Sports and Culture, Japan, and by a grant from Aomori Bank, Aomori, Japan, for the research project "Cerebrovascular Disorders".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiko Meguro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meguro, R., Asano, Y., Iwatsuki, H. et al. Perfusion-Perls and -Turnbull methods supplemented by DAB intensification for nonheme iron histochemistry: demonstration of the superior sensitivity of the methods in the liver, spleen, and stomach of the rat. Histochem Cell Biol 120, 73–82 (2003). https://doi.org/10.1007/s00418-003-0539-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0539-y

Keywords

Navigation