Skip to main content

Advertisement

Log in

Impact of keratoprosthesis implantation on retinal and visual pathway function assessed by electrophysiological testing

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the impact of Boston Type I Keratoprosthesis (BI-Kpro) implantation on retinal and visual pathway function, respectively, assessed by full-field electroretinography (ERG) and visually evoked potentials (VEPs).

Methods

This is a prospective interventional longitudinal study, and patients with BI-Kpro implantation were assessed preoperatively and at 3 and 12 months after surgery. ERG, flash, and pattern-reversal VEPs (15’ and 60’ checks) along with visual acuity (VA) were performed.

Results

A total of 13 patients (24 to 88 years of age) were included. Mean baseline VA (logMAR) improved from 2.30 to 1.04 at 3 months and to 1.00 at 12 months. Flash VEPs were normal in 6 (46%) patients and in 10 (77%) patients at the 12-month follow-up. PVEP was non-detectable in all patients preoperatively for both check sizes. For 15’ check size, 6 (46%) patients showed responses after 3 and 12 months except for 1 patient with normal responses at 12 months with the remaining non-detectable. For 60’ checks, 11 (85%) patients had responses 3 months after surgery with only 9 (70%) showing responses at 12 months. Abnormal full-field ERGs were found in all patients preoperatively. Amplitude improvement was found in 10 (77%) patients from baseline to 3 months and in 8 (62%) patients from the 3- to the 12-month follow-up.

Conclusions

In this small cohort of patients with BI-Kpro implantation, a remarkable improvement on visual function quantitatively assessed by electrophysiological testing was found in the majority of cases. Visual electrophysiological testing can contribute to objectively assess functional outcomes in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Avadhanam VS, Smith HE, Liu C (2015) Keratoprostheses for corneal blindness: a review of contemporary devices. Clin Ophthalmol 9:697–720. https://doi.org/10.2147/OPTH.S27083. (Published 2015 Apr 16)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matthaei M, Bachmann B, Hos D, Siebelmann S, Schaub F, Cursiefen C (2019) Technik der Boston-Typ-I-Keratoprothesen-Implantation : videobeitrag [Boston type I keratoprosthesis implantation technique : video article]. Ophthalmologe 116(1):67–72. https://doi.org/10.1007/s00347-018-0806-x

    Article  CAS  PubMed  Google Scholar 

  3. Sayegh RR, Dohlman CH, Greenstein SH, Peli E (2015) The Boston keratoprosthesis provides a wide depth of focus. Ophthalmic Physiol Opt 35(1):39–44. https://doi.org/10.1111/opo.12181

    Article  PubMed  Google Scholar 

  4. Wendel RT, Mannis MJ, Keltner JL (1984) Role of electrophysiologic testing in the preoperative evaluation of corneal transplant patients. Ann Ophthalmol 16(8):788–793

    CAS  PubMed  Google Scholar 

  5. Pfeiffer N, Tillmon B, Bach M (1993) Predictive value of the pattern electroretinogram in high-risk ocular hypertension. Invest Ophthalmol Vis Sci 34(5):1710–1715

    CAS  PubMed  Google Scholar 

  6. Bessler P, Klee S, Kellner U, Haueisen J (2010) Silent substitution stimulation of S-cone pathway and L- and M-cone pathway in glaucoma. Invest Ophthalmol Vis Sci 51(1):319–326. https://doi.org/10.1167/iovs.09-3467

    Article  PubMed  Google Scholar 

  7. Solf B, Schramm S, Link D, Klee S (2019) Objective measurement of forward-scattered light in the human eye: an electrophysiological approach. PLoS One 14(4):e0214850. https://doi.org/10.1371/journal.pone.0214850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galloway NR (1988) Electrophysiological testing of eyes with opaque media. Eye (Lond) 2(Pt 6):615–624. https://doi.org/10.1038/eye.1988.114

    Article  PubMed  Google Scholar 

  9. Silva LD, Santos A, Hirai F et al (2022) B-scan ultrasound, visual electrophysiology and perioperative videoendoscopy for predicting functional results in keratoprosthesis candidates. Br J Ophthalmol 106(1):32–36. https://doi.org/10.1136/bjophthalmol-2020-316962

    Article  PubMed  Google Scholar 

  10. Penn RD, Hagins WA (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223(5202):201–204. https://doi.org/10.1038/223201a0

    Article  CAS  PubMed  Google Scholar 

  11. Miller RF, Dowling JE (1970) Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol 33(3):323–341. https://doi.org/10.1152/jn.1970.33.3.323

    Article  CAS  PubMed  Google Scholar 

  12. Newman EA, Odette LL (1984) Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol 51(1):164–182. https://doi.org/10.1152/jn.1984.51.1.164

    Article  CAS  PubMed  Google Scholar 

  13. Robson AG, Nilsson J, Li S et al (2018) ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol 136(1):1–26. https://doi.org/10.1007/s10633-017-9621-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thuangtong A, Samsen P, Ruangvaravate N, Supiyaphun C (2012) Visual prognostic value of ocular electrophysiology tests in corneal transplantation. J Med Assoc Thai 95(Suppl 4):S50–S55

    PubMed  Google Scholar 

  15. Holladay JT (1997) Proper method for calculating average visual acuity. J Refract Surg 13(4):388–391. https://doi.org/10.3928/1081-597X-19970701-16

    Article  CAS  PubMed  Google Scholar 

  16. Schulze-Bonsel K, Feltgen N, Burau H, Hansen L, Bach M (2006) Visual acuities “hand motion” and “counting fingers” can be quantified with the freiburg visual acuity test. Invest Ophthalmol Vis Sci 47(3):1236–1240. https://doi.org/10.1167/iovs.05-0981

    Article  PubMed  Google Scholar 

  17. Bonnan M, Valentino R, Debeugny S et al (2018) Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry 89(4):346–351. https://doi.org/10.1136/jnnp-2017-316286

    Article  PubMed  Google Scholar 

  18. Odom JV, Bach M, Brigell M et al (2016) ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol 133(1):1–9. https://doi.org/10.1007/s10633-016-9553-y

    Article  PubMed  Google Scholar 

  19. Jasper H (1958) Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol 10:370–375. https://doi.org/10.1016/0013-4694(58)90053-1

    Article  Google Scholar 

  20. Dotto PF, Berezovsky A, Sacai PY, Rocha DM, Salomão SR (2017) Gender-based normative values for pattern-reversal and flash visually evoked potentials under binocular and monocular stimulation in healthy adults. Doc Ophthalmol 135(1):53–67. https://doi.org/10.1007/s10633-017-9594-x]

    Article  PubMed  Google Scholar 

  21. McCulloch DL, Marmor MF, Brigell MG et al (2015) ISCEV Standard for full-field clinical electroretinography (2015 update) [published correction appears in Doc Ophthalmol. 2015 Aug;131(1):81–3]. Doc Ophthalmol 130(1):1–12. https://doi.org/10.1007/s10633-014-9473-7

  22. Pereira JM, Mendieta L, Sacai PY, Salomão SR, Berezovsky A (2003) Estudo normativo do eletrorretinograma de campo total em adultos jovens. Arq Bras Oftalmol 66(2):137–144. https://doi.org/10.1590/S0004-27492003000200005

    Article  Google Scholar 

  23. Robson AG, Frishman LJ, Grigg J, Hamilton R, Jeffrey BG, Kondo M, Li S, McCulloch DL (2022) ISCEV Standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol 144(3):165–177. https://doi.org/10.1007/s10633-022-09872-0

    Article  PubMed  PubMed Central  Google Scholar 

  24. Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–6. https://doi.org/10.1001/archopht.1992.01080230071024

    Article  CAS  PubMed  Google Scholar 

  25. Contestabile MT, Suppressa F, Tonelli G, Giorgi D, Antonnicola G, D’Alba E (1995) The influence of age on the flash visual evoked potentials. Acta Ophthalmol Scand 73(4):308–312. https://doi.org/10.1111/j.1600-0420.1995.tb00032.x

    Article  CAS  PubMed  Google Scholar 

  26. de Araujo AL, Charoenrook V, de la Paz MF, Temprano J, Barraquer RI, Michael R (2012) The role of visual evoked potential and electroretinography in the preoperative assessment of osteo-keratoprosthesis or osteo-odonto-keratoprosthesis surgery. Acta Ophthalmol 90(6):519–525. https://doi.org/10.1111/j.1755-3768.2010.02086.x

    Article  PubMed  Google Scholar 

  27. de Oliveira LA, Pedreira Magalhães F, Hirai FE, de Sousa LB (2014) Experience with Boston keratoprosthesis type 1 in the developing world. Can J Ophthalmol 49(4):351–357. https://doi.org/10.1016/j.jcjo.2014.05.003

    Article  PubMed  Google Scholar 

  28. Lee WB, Shtein RM, Kaufman SC, Deng SX, Rosenblatt MI (2015) Boston keratoprosthesis: outcomes and complications: a report by the American Academy of Ophthalmology. Ophthalmology 122(7):1504–1511. https://doi.org/10.1016/j.ophtha.2015.03.025

    Article  PubMed  Google Scholar 

  29. Goins KM, Kitzmann AS, Greiner MA et al (2016) Boston type 1 keratoprosthesis: visual outcomes, device retention, and complications. Cornea 35(9):1165–1174. https://doi.org/10.1097/ICO.0000000000000886

    Article  PubMed  Google Scholar 

  30. Schwartz R, Barak A, Newman H (2015) Visually evoked potentials in a patient with a fyodorov-zuev keratoprosthesis. Case Rep Ophthalmol 6(1):12–17. https://doi.org/10.1159/000369579. (Published 2015 Jan 14)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Ministério da Educação – Brasil (PNPD 2374/2011) to LAO and Finance Code 001 to LDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauro Augusto de Oliveira.

Ethics declarations

Ethical approval

The retrospective chart review involving human participants was in accordance with the ethical standards of the Committee on Ethics in Research of Federal University of São Paulo (CEP 0397/2015) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.D., Berezovsky, A., Salomão, S.R. et al. Impact of keratoprosthesis implantation on retinal and visual pathway function assessed by electrophysiological testing. Graefes Arch Clin Exp Ophthalmol 261, 1627–1637 (2023). https://doi.org/10.1007/s00417-022-05961-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05961-7

Keywords

Navigation