Skip to main content

Advertisement

Log in

Femtosecond laser-assisted cataract surgery versus conventional phacoemulsification: comparison of internal aberrations and visual quality

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare the internal aberrations and optical quality after femtosecond laser-assisted cataract surgery (FLACS) and conventional phacoemulsification cataract surgery (CPCS).

Methods

This study included patients who received FLACS or CPCS from January 2016 to July 2019. Postoperative examinations included wavefront measurements under pupil diameters of 3.0 mm and 5.0 mm, intraocular lens (IOL) decentration, visual acuity (VA), and refractive outcomes. Visual quality was measured with Strehl ratio and modulation transfer function (MTF). Subgroup analyses were conducted based on monofocal or multifocal-extended depth of focus (EDOF) IOL.

Results

The study consisted of 221 eyes (105 eyes in FLACS and 116 eyes in CPCS). With a pupil diameter of 5.0 mm, FLACS demonstrated a significantly lower root mean square of total internal aberration (P = 0.004), higher order aberrations (HOAs) (P = 0.034), tilt (P = 0.049), coma (P = 0.004), and spherical aberration (P = 0.014). IOL tilt was found to be positively correlated with total internal aberration (P < 0.001), HOAs (P < 0.001), and coma (P < 0.001). The FLACS group presented significantly smaller IOL decentration than the CPCS group (P < 0.001), but there were no significant differences in terms of VA and refractive outcomes between groups. In the multifocal-EDOF subgroup, Strehl ratio and MTF values were significantly higher in the femtosecond group with a 3.0-mm pupil.

Conclusion

FLACS induced significantly lower values of IOL tilt, decentration, and internal aberrations compared with the CPCS group with a pupil diameter of 5.0 mm, while no significant differences were found in the VA or optical quality over long-term observation.

Trial registration

This trial was registered at www.chictr.org.cn (registration number ChiCTR2000038965).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Nagy Z, Takacs A, Filkorn T, Sarayba M (2009) Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg 25:1053–1060. https://doi.org/10.3928/1081597X-20091117-04

    Article  PubMed  Google Scholar 

  2. Yu A-Y, Ni L-Y, Wang Q-M et al (2015) Preliminary clinical investigation of cataract surgery with a noncontact femtosecond laser system. Lasers Surg Med 47:698–703. https://doi.org/10.1002/lsm.22405

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ewe SYP, Abell RG, Oakley CL et al (2016) A comparative cohort study of visual outcomes in femtosecond laser-assisted versus phacoemulsification cataract surgery. Ophthalmol 123:178–182. https://doi.org/10.1016/j.ophtha.2015.09.026

    Article  Google Scholar 

  4. Manning S, Barry P, Henry Y et al (2016) Femtosecond laser–assisted cataract surgery versus standard phacoemulsification cataract surgery: study from the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J Cataract Refract Surg 42:1779–1790. https://doi.org/10.1016/j.jcrs.2016.10.013

    Article  PubMed  Google Scholar 

  5. Popovic M, Campos-Möller X, Schlenker MB, Ahmed IIK (2016) Efficacy and safety of femtosecond laser-assisted cataract surgery compared with manual cataract surgery. Ophthalmol 123:2113–2126. https://doi.org/10.1016/j.ophtha.2016.07.005

    Article  Google Scholar 

  6. Schwiegerling J (2000) Theoretical limits to visual performance. Surv Ophthalmol 45:139–146. https://doi.org/10.1016/S0039-6257(00)00145-4

    Article  CAS  PubMed  Google Scholar 

  7. Lombardo M, Lombardo G (2010) Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J Cataract Refract Surg 36:313–331. https://doi.org/10.1016/j.jcrs.2009.09.026

    Article  PubMed  Google Scholar 

  8. Applegate RA, Marsack JD, Ramos R, Sarver EJ (2003) Interaction between aberrations to improve or reduce visual performance. J Cataract Refract Surg 29:1487–1495. https://doi.org/10.1016/S0886-3350(03)00334-1

    Article  PubMed  Google Scholar 

  9. Oliveira CM, Ferreira A, Franco S (2012) Wavefront analysis and Zernike polynomial decomposition for evaluation of corneal optical quality. J Cataract Refract Surg 38:343–356. https://doi.org/10.1016/j.jcrs.2011.11.016

    Article  PubMed  Google Scholar 

  10. Serrao S, Lombardo G, Schiano-Lomoriello D et al (2014) Preliminary investigation of corneal wavefront aberration following femtosecond laser clear corneal incision for cataract surgery. Eur J Ophthalmol 24:842–849. https://doi.org/10.5301/ejo.5000485

    Article  PubMed  Google Scholar 

  11. Schweitzer C, Brezin A, Cochener B et al (2020) Femtosecond laser-assisted versus phacoemulsification cataract surgery (FEMCAT): a multicentre participant-masked randomised superiority and cost-effectiveness trial. Lancet Lond Engl 395:212–224. https://doi.org/10.1016/S0140-6736(19)32481-X

    Article  Google Scholar 

  12. Ernest PH, Popovic M, Schlenker MB et al (2019) Higher order aberrations in femtosecond laser–assisted versus manual cataract surgery: a retrospective cohort study. J Refract Surg 35:102–108. https://doi.org/10.3928/1081597X-20190107-02

    Article  PubMed  Google Scholar 

  13. Miháltz K, Knorz MC, Alió JL et al (2011) Internal aberrations and optical quality after femtosecond laser anterior capsulotomy in cataract surgery. J Refract Surg 27:711–716. https://doi.org/10.3928/1081597X-20110913-01

    Article  PubMed  Google Scholar 

  14. Espaillat A, Pérez O, Potvin R (2016) Clinical outcomes using standard phacoemulsification and femtosecond laser-assisted surgery with toric intraocular lenses. Clin Ophthalmol Auckl NZ 10:555–563. https://doi.org/10.2147/OPTH.S102083

    Article  Google Scholar 

  15. Kovács I, Kránitz K, Sándor GL et al (2014) The effect of femtosecond laser capsulotomy on the development of posterior capsule opacification. J Refract Surg 30:154–158. https://doi.org/10.3928/1081597X-20140217-01

    Article  PubMed  Google Scholar 

  16. Kránitz K, Miháltz K, Sándor GL et al (2012) Intraocular lens tilt and decentration measured by scheimpflug camera following manual or femtosecond laser–created continuous circular capsulotomy. J Refract Surg 28:259–263. https://doi.org/10.3928/1081597X-20120309-01

    Article  PubMed  Google Scholar 

  17. Lee JA, Song WK, Kim JY et al (2019) Femtosecond laser–assisted cataract surgery versus conventional phacoemulsification: Refractive and aberrometric outcomes with a diffractive multifocal intraocular lens. J Cataract Refract Surg 45:21–27. https://doi.org/10.1016/j.jcrs.2018.08.032

    Article  PubMed  Google Scholar 

  18. Shaheen MS, AbouSamra A, Helaly HA et al (2020) Comparison between refractive outcomes of femtosecond laser-assisted cataract surgery and standard phacoemulsification. BMC Ophthalmol 20:1. https://doi.org/10.1186/s12886-019-1277-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Taketani F, Matuura T, Yukawa E, Hara Y (2004) Influence of intraocular lens tilt and decentration on wavefront aberrations. J Cataract Refract Surg 30:2158–2162. https://doi.org/10.1016/j.jcrs.2004.02.072

    Article  PubMed  Google Scholar 

  20. Baumeister M, Neidhardt B, Strobel J, Kohnen T (2005) Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison. Am J Ophthalmol 140:1051–1058. https://doi.org/10.1016/j.ajo.2005.07.026

    Article  PubMed  Google Scholar 

  21. Schuster AK, Tesarz J, Vossmerbaeumer U (2013) The impact on vision of aspheric to spherical monofocal intraocular lenses in cataract surgery: a systematic review with meta-analysis. Ophthalmol 120:2166–2175. https://doi.org/10.1016/j.ophtha.2013.04.011

    Article  Google Scholar 

  22. Trueb PR, Albach C, Montés-Micó R, Ferrer-Blasco T (2009) Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses. Ophthalmol 116:890–895. https://doi.org/10.1016/j.ophtha.2008.12.002

    Article  Google Scholar 

  23. Xu J, Zheng T, Lu Y (2019) Effect of decentration on the optical quality of monofocal, extended depth of focus, and bifocal intraocular lenses. J Refract Surg 35:484–492. https://doi.org/10.3928/1081597X-20190708-02

    Article  PubMed  Google Scholar 

  24. Alió JL, Piñero DP, Plaza-Puche AB et al (2011) Visual and optical performance with two different diffractive multifocal intraocular lenses compared to a monofocal lens. J Refract Surg 27:570–581. https://doi.org/10.3928/1081597X-20101223-01

    Article  PubMed  Google Scholar 

  25. Emery J (1979) Little JH (1979) Patient selection. In: Emery J, Little JH (eds) Phacoemulsification and Aspiration of Cataracts: Surgical Techniques, Complications, and Results. Mosby, St. Louis, pp 45–48

    Google Scholar 

  26. Sasaki K, Sakamoto Y, Shibata T et al (1989) Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images. J Cataract Refract Surg 15:454–457. https://doi.org/10.1016/s0886-3350(89)80071-9

    Article  CAS  PubMed  Google Scholar 

  27. Nagy ZZ, Dunai A, Kránitz K et al (2014) Evaluation of femtosecond laser-assisted and manual clear corneal incisions and their effect on surgically induced astigmatism and higher-order aberrations. J Refract Surg 30:522–525. https://doi.org/10.3928/1081597X-20140711-04

    Article  PubMed  Google Scholar 

  28. Nagy ZZ, Kránitz K, Takacs AI et al (2011) Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J Refract Surg 27:564–569. https://doi.org/10.3928/1081597X-20110607-01

    Article  PubMed  Google Scholar 

  29. Filkorn T, Kovács I, Takács Á et al (2012) Comparison of IOL power calculation and refractive outcome after laser refractive cataract surgery with a femtosecond laser versus conventional phacoemulsification. J Refract Surg 28:540–544. https://doi.org/10.3928/1081597X-20120703-04

    Article  PubMed  Google Scholar 

  30. McKelvie J, McArdle B, McGhee C (2011) The influence of tilt, decentration, and pupil size on the higher-order aberration profile of aspheric intraocular lenses. Ophthalmol 118:1724–1731. https://doi.org/10.1016/j.ophtha.2011.02.025

    Article  Google Scholar 

  31. Bellucci R, Morselli S, Piers P (2004) Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses. J Refract Surg 20:297–306. https://doi.org/10.3928/1081-597X-20040701-01

    Article  PubMed  Google Scholar 

  32. Mester U, Dillinger P, Anterist N (2003) Impact of a modified optic design on visual function: clinical comparative study11None of the authors has a financial or proprietary interest in any material or method mentioned. J Cataract Refract Surg 29:652–660. https://doi.org/10.1016/S0886-3350(02)01983-1

    Article  PubMed  Google Scholar 

  33. Kohnen T, Allen D, Boureau C et al (2006) European multicenter study of the AcrySof ReSTOR apodized diffractive intraocular lens. Ophthalmol 113:578-584.e1. https://doi.org/10.1016/j.ophtha.2005.11.020

    Article  Google Scholar 

  34. Song X, Liu X, Wang W et al (2020) Visual outcome and optical quality after implantation of zonal refractive multifocal and extended-range-of-vision IOLs: a prospective comparison. J Cataract Refract Surg 46:540–548. https://doi.org/10.1097/j.jcrs.0000000000000088

    Article  PubMed  Google Scholar 

  35. Thibos LN, Hong X, Bradley A, Cheng X (2002) Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J Opt Soc Am A 19:2329. https://doi.org/10.1364/JOSAA.19.002329

    Article  Google Scholar 

  36. Quiñones A, Gleitsmann K, Freeman M, et al (2013) Benefits and harms of femtosecond laser assisted cataract surgery: a systematic review. Department of Veterans Affairs, Washington (DC)

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81970779, 81600716) and Key Research and Development Project of Zhejiang Province (2020C03035).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design (Yueyang Zhong and Ke Yao); data collection (Yueyang Zhong and Yanan Zhu); data analysis and interpretation (Yueyang Zhong and Wei Wang); drafting manuscript (Yueyang Zhong and Yanan Zhu); critical revision of manuscript (Yueyang Zhong, Wei Wang, and Ke Yao); securing funding (Yanan Zhu, Wei Wang, and Ke Yao); admin, technical, or material support (Kai Wang and Xin Liu); supervision (Ke Yao); final approval (Yueyang Zhong, Yanan Zhu, Wei Wang, Kai Wang, Xin Liu, and Ke Yao).

Corresponding author

Correspondence to Ke Yao.

Ethics declarations

Ethics approval

This study was conducted with the approval of the institutional review board of the Second Affiliated Hospital of School of Medicine, Zhejiang University, China, and was in adherence to the principles of the Declaration of Helsinki.

Consent to participate

Written informed consent was obtained from all the patients.

Consent for publication

The patients signed informed consent that their clinical data may be included in scientific studies.

Conflict of interest

Pro. Ke Yao is a member of the Editorial Board of the journal. We declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1722 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Zhu, Y., Wang, W. et al. Femtosecond laser-assisted cataract surgery versus conventional phacoemulsification: comparison of internal aberrations and visual quality. Graefes Arch Clin Exp Ophthalmol 260, 901–911 (2022). https://doi.org/10.1007/s00417-021-05441-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05441-4

Keywords

Navigation