Skip to main content

Advertisement

Log in

Observation of fundus and optical coherence tomography angiography manifestations in carotid cavernous fistula patients

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate fundus and optical coherence tomography angiography (angio-OCT) manifestations in carotid cavernous fistula (CCF) patients.

Methods

Nine eyes of 7 CCF patients diagnosed with digital subtraction angiography (DSA) were included in this study. Best-corrected visual acuity (BCVA), intraocular pressure (IOP), slit lamp, fundus, spectral-domain optical coherence tomography (SD-OCT), and optical coherence tomography angiography (angio-OCT) examination in the CCF patients and 10 normal controls were conducted. Subfoveal choroidal thickness (SFCT) and macular vascular density (VD) were measured and compared with the control group. SFCT and VD were also compared before and after embolization therapy.

Results

Two male and 5 female CCF patients were included. The average age was 59.7 ±10.0 (years). Embolization therapy was conducted in 3 patients. Fundus manifestations included disc oedema and exudation, retinal venular dilation, and retinal haemorrhage. B-scan OCT examination revealed retinal and choroidal undulations, retinal-choroidal thickness, retinal cystoid oedema, and subretinal fluid. The SFCT of the affected eyes was thicker than that of the control group (412.3 ± 123.7 μm vs. 272.9 ± 62.9 μm; P = 0.006). Macular superficial capillary plexus (SCP) VD in affected eyes was lower than that in the control eyes (50.1 ±2.3 % vs. 52.7 ± 1.7 % ; P = 0.014). The SFCT was reduced, and the vessel density in the SCP was increased after embolization therapy.

Conclusion

We demonstrated decreased VD in CCF patients with specific fundus and OCT manifestations. The pathological changes were immediately reduced after embolization therapy. This preliminary observation provides a supplemental method for the diagnosis and pathophysiological examination of CCF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Datasets used or analyzed in the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable

References

  1. Barrow DL, Spector RH, Braun IF et al (1985) Classification and treatment of spontaneous carotid-cavernous sinus fistulas. J Neurosurg 62(2):248–256

    Article  CAS  PubMed  Google Scholar 

  2. Chaudhry IA, Elkhamry SM, Alrashed W et al (2009) Carotidcavernousfistula: ophthalmological implications. Middle East Afr J Ophthalmol 16:57–63

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jensen RW, Chuman H, Trobe JD et al (2004) Facial and trigeminal neuropathies in cavernous sinus fistulas. J Neuro-Oncol 24(1):34–38

    Google Scholar 

  4. Bujak M, Margolin E, Thompson A et al (2010) Spontaneous resolution of two dural carotid-cavernous fistulas presenting with optic neuropathy and marked congestive ophthalmopathy. J Neuroophthalmol 30(3):222–227

    Article  PubMed  Google Scholar 

  5. Todorova MG, Parsa CF (2017) Ciliary body/iris appositioning producing mechanical pupillary defects in carotid-cavernous sinus fistula: an overlooked pathophysiologic mechanism. J Neuroophthalmol 37(1):30–33

    Article  PubMed  Google Scholar 

  6. Andoh T, Nakashima T, Araki Y et al (1991) Spontaneous carotid-cavernous sinus fistula; analysis of 16 cases. No Shinkei Geka 19(9):831–839

    CAS  PubMed  Google Scholar 

  7. De Keizer R (2003) Carotid-cavernous and orbital arteriovenous fistulas: ocular features, diagnostic and hemodynamic considerations in relation to visual impairment and morbidity. Orbit. 22(2):121–142

    Article  PubMed  Google Scholar 

  8. Ishijima K, Kashiwagi K, Nakano K et al (2003) Ocular manifestations and prognosis of secondary glaucoma in patients with carotid-cavernous fistula. Jpn J Ophthalmol 47(6):603–608

    Article  PubMed  Google Scholar 

  9. Wang HX, Bai RL, Huang CG et al (2004) Hemiparesis in carotid cavernous fistulas (CCFs): a case report and review of the literature. Chin J Traumatol 7(5):317–320

    PubMed  Google Scholar 

  10. Latt H, Kyaw K, Yin HH et al (2018) A case of right-sided direct carotid cavernous fistula: a diagnostic challenge. Am J Case Rep 19:47–51

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leishangthem L, Satti SR (2017) Indirect carotid cavernous fistula mimicking ocular myasthenia. BMJ Case Rep. https://doi.org/10.1136/bcr-2017-222048

  12. Taki W, Nakahara I, Nishi S et al (1994) Pathogenetic and therapeutic considerations of carotid-cavernous sinus fistulas. Acta Neurochir 127(1-2):6–14

    Article  CAS  PubMed  Google Scholar 

  13. Das JK, Medhi J, Bhattacharya P et al (2007) Clinical spectrum of spontaneous carotid-cavernous fistula. Indian J Ophthalmol 55(4):310–312

    Article  PubMed  Google Scholar 

  14. Parikh RS, Desai S, Kothari K (2011) Dilated episcleral veins with secondary open angle glaucoma. Indian J Ophthalmol 59(2):153–155

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez Martin-Moro J, Sales-Sanz M, Oblanca-Llamazares N et al (2018) Choroidal thickening in a case of carotid cavernous fistula. Orbit. 37(4):306–308

    Article  PubMed  Google Scholar 

  16. Rey A, Castillo L, Dyrda A et al (2016) Subfoveal choroidal thickness changes in carotid cavernous fistula following spontaneous resolution. BMC Ophthalmol 16:63

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shinohara Y, Kashima T, Akiyama H et al (2013) Alteration of choroidal thickness in a case of carotid cavernous fistula: a case report and a review of the literature. BMC Ophthalmol 13:75

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alam MS, Jain M, Mukherjee B et al (2019) Visual impairment in high flow and low flow carotid cavernous fistula. Sci Rep 9(1):12872

    Article  PubMed  PubMed Central  Google Scholar 

  20. Preechawat P, Narmkerd P, Jiarakongmun P et al (2008) Dural carotid cavernous sinus fistula: ocular characteristics, endovascular management and clinical outcome. J Med Assoc Thail 91(6):852–858

    Google Scholar 

  21. Henderson AD, Miller NR (2018) Carotid-cavernous fistula: current concepts in aetiology, investigation, and management. Eye (Lond) 32(2):164–172

    Article  CAS  Google Scholar 

  22. Henderson JW, Schneider RC (1958) The ocular findings in carotid-cavernous fistula in a series of 17 cases. Trans AmOphthalmol Soc 56:123–144

    CAS  Google Scholar 

  23. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science. 254(5035):1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Q, Chan SY, Yan Y et al (2018) Optical coherence tomography angiography in retinal vein occlusions. Graefes Arch Clin Exp Ophthalmol 256(9):1615–1622

    Article  PubMed  Google Scholar 

  25. Tsai G, Banaee T, Conti FF et al (2018) Optical coherence tomography angiography in eyes with retinal vein occlusion. J Ophthalmic Vis Res 13(3):315–332

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moussa M, Leila M, Bessa AS et al (2019) Grading of macular perfusion in retinal vein occlusion using en-face swept-source optical coherence tomography angiography: a retrospective observational case series. BMC Ophthalmol 19(1):127

    Article  PubMed  PubMed Central  Google Scholar 

  27. Seknazi D, Coscas F, Sellam A et al (2018) Optical coherence tomography angiography in retinal vein occlusion: correlations between macular vascular density, visual acuity, and peripheral nonperfusion area on fluorescein angiography. Retina. 38(8):1562–1570

    Article  PubMed  Google Scholar 

  28. Koulisis N, Kim AY, Chu Z et al (2017) Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography. PLoS One 12(4):e0176404. https://doi.org/10.1371/journal.pone.0176404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Inam O, Arat YO, Yavas GF et al (2019) Retinal and choroidal optical coherence tomography findings of carotid cavernous fistula. Am J Ophthalmol 206:264–273

    Article  PubMed  Google Scholar 

  30. Barcia-Salorio JL, Soler F, Barcia JA et al (1994) Stereotactic radiosurgery for the treatment of low-flow carotid-cavernous fistulae: results in a series of 25 cases. Stereotact Funct Neurosurg 63(1-4):266–270

    Article  CAS  PubMed  Google Scholar 

  31. Lanzas MG, Maravi E, Maso J et al (1996) Low flow cavernous sinus fistula. Treatment by highly selective embolization. Rev Neurol 24(128):452–455

    CAS  PubMed  Google Scholar 

  32. Bilbin-Bukowska A, Stepien A, Brzozowski K et al (2014) Diagnostic and therapeutic problems of bilateral carotid-cavernous sinus fistula. Pol Merkur Lekarski 36(215):345–347

    PubMed  Google Scholar 

  33. Zenteno M, Santos Franco J, Moscote-Salazar LR et al (2014) Endovascular management of cavernous sinus dural fistulas. Bol Asoc Med P R 106(1):17–24

    PubMed  Google Scholar 

  34. Entezari M, Karimi S, Ramezani A et al (2018) Choroidal thickness in healthy subjects. J Ophthalmic Vis Res 13(1):39–43

    Article  PubMed  PubMed Central  Google Scholar 

  35. Munch IC, Altuntas C, Li XQ, et al. (2016) Dark adaptation in relation to choroidal thickness in healthy young subjects: a cross-sectional, observational study. BMC Ophthalmol. https://doi.org/10.1186/s12886-016-0273-6.

    Book  Google Scholar 

  36. Altinkaynak H, Ceylan E, Kartal B et al (2016) Measurement of choroidal thickness following caffeine intake in healthy subjects. Curr Eye Res 41(5):708–714

    CAS  PubMed  Google Scholar 

  37. Tuncer I, Karahan E, Zengin MO et al (2015) Choroidal thickness in relation to sex, age, refractive error, and axial length in healthy Turkish subjects. Int Ophthalmol 35(3):403–410

    Article  PubMed  Google Scholar 

  38. Vural AD, Kara N, Sayin N et al (2014) Choroidal thickness changes after a single administration of coffee in healthy subjects. Retina. 34(6):1223–1228

    Article  CAS  PubMed  Google Scholar 

  39. De Carlo TE, Romano A, Waheed NK et al (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. In: doi: 10.1186/s40942-015-0005-8

    Google Scholar 

  40. Pellegrini M, Cozzi M, Staurenghi G, et al. (2019) Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders. PLoS One. https://doi.org/10.1371/journal.pone.0214892.

Download references

Author information

Authors and Affiliations

Authors

Contributions

XW designed this study, summarized the data, and drafted this manuscript. Jin Ma and Yong Zhong revised the manuscript in detail. XZ conducted the intervention therapy operations. YW assisted with the acquisition of the data. LG helped with the statistical analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jin Ma or Yong Zhong.

Ethics declarations

Ethics approval

Our study was conducted according to the tenets of the Declaration of Helsinki. This study was approved by the institutional review board of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. Formal consent was not required for this study.

Consent to participate

Not applicable

Consent for publication

All participants provided written informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, X., Gan, L. et al. Observation of fundus and optical coherence tomography angiography manifestations in carotid cavernous fistula patients. Graefes Arch Clin Exp Ophthalmol 259, 2573–2582 (2021). https://doi.org/10.1007/s00417-021-05117-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05117-z

Keywords

Navigation