Skip to main content

Advertisement

Log in

Optical coherence tomography angiography findings of type 1 diabetic patients with diabetic retinopathy, in comparison with type 2 patients

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare optical coherence tomography angiography (OCT-A) parameters between type 1 and type 2 diabetic patients with diabetic retinopathy (DR).

Methods

A total of 70 patients with type 1 diabetes and 70 with type 2 diabetes were retrospectively analyzed. DR was graded as no DR, mild nonproliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative DR (PDR). Using OCT-A, the foveal avascular zone (FAZ) area (mm2) and vascular density (VD) (%) were calculated in the superficial capillary plexus (SCP) and deep capillary plexus (DCP).

Results

In both type 1 and 2 diabetes patients, the FAZ area (mm2) in both capillary plexuses (CP) increased with DR progression, whereas the VD (%) progressively decreased. The changes in the FAZ area and the VD were significantly greater in the DCP than in the SCP in both types of diabetes patients(p < 0.001). In the analysis of decreasing slope of the VD in the DCP, attenuation was not significant until severe NPDR stage but then abruptly decreased when it progressed to PDR stage in type 1 diabetes. In type 2 diabetes, the DCP VD decreased gradually as DR stage progressed.

Conclusions

As DR progression, the increasing in FAZ area and the decreasing in VD are more severe in the DCP than in the SCP in both types of diabetes. In type 1 diabetes eyes, they were remained in relatively healthy until it gets to the advanced stage of DR, while the gradual deterioration of FAZ area and VD was found from the early stage to the advanced stage of DR in type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Congdon NG, Friedman DS, Lietman T (2003) Important causes of visual impairment in the world today. JAMA 290(15):2057–2060. https://doi.org/10.1001/jama.290.15.2057

    Article  CAS  PubMed  Google Scholar 

  2. Liew G, Sim DA, Keane PA, Tan AG, Mitchell P, Wang JJ, Wong TY, Fruttiger M, Tufail A, Egan CA (2015) Diabetic macular ischaemia is associated with narrower retinal arterioles in patients with type 2 diabetes. Acta Ophthalmol 93(1):e45–e51. https://doi.org/10.1111/aos.12519

    Article  PubMed  Google Scholar 

  3. Sim DA, Keane PA, Zarranz-Ventura J, Fung S, Powner MB, Platteau E, Bunce CV, Fruttiger M, Patel PJ, Tufail A, Egan CA (2013) The effects of macular ischemia on visual acuity in diabetic retinopathy. Invest Ophthalmol Vis Sci 54(3):2353–2360. https://doi.org/10.1167/iovs.12-11103

    Article  PubMed  Google Scholar 

  4. Manousaridis K, Talks J (2012) Macular ischaemia: a contraindication for anti-VEGF treatment in retinal vascular disease? Br J Ophthalmol 96(2):179–184. https://doi.org/10.1136/bjophthalmol-2011-301087

    Article  PubMed  Google Scholar 

  5. Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616

    Article  PubMed  Google Scholar 

  6. de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5. https://doi.org/10.1186/s40942-015-0005-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matsunaga D, Yi J, Puliafito CA, Kashani AH (2014) OCT angiography in healthy human subjects. Ophthalmic Surg Lasers Imaging Retina 45(6):510–515. https://doi.org/10.3928/23258160-20141118-04

    Article  PubMed  Google Scholar 

  8. Garcia JM, Lima TT, Louzada RN, Rassi AT, Isaac DL, Avila M (2016) Diabetic macular ischemia diagnosis: comparison between optical coherence tomography angiography and fluorescein angiography. J Ophthalmol. https://doi.org/10.1155/2016/3989310

    Article  Google Scholar 

  9. Gozlan J, Ingrand P, Lichtwitz O, Cazet-Supervielle A, Benoudis L, Boissonnot M, Hadjadj S, Leveziel N (2017) Retinal microvascular alterations related to diabetes assessed by optical coherence tomography angiography: a cross-sectional analysis. Medicine (Baltimore) 96(15):e6427. https://doi.org/10.1097/md.0000000000006427

    Article  Google Scholar 

  10. Ting DSW, Tan GSW, Agrawal R, Yanagi Y, Sie NM, Wong CW, San Yeo IY, Lee SY, Cheung CMG, Wong TY (2017) Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol 135(4):306–312. https://doi.org/10.1001/jamaophthalmol.2016.5877

    Article  PubMed  Google Scholar 

  11. Romero-Aroca P, Navarro-Gil R, Valls-Mateu A, Sagarra-Alamo R, Moreno-Ribas A, Soler N (2017) Differences in incidence of diabetic retinopathy between type 1 and 2 diabetes mellitus: a nine-year follow-up study. Br J Ophthalmol 101(10):1346–1351. https://doi.org/10.1136/bjophthalmol-2016-310063

    Article  PubMed  Google Scholar 

  12. Wang SY, Andrews CA, Herman WH, Gardner TW, Stein JD (2017) Incidence and risk factors for developing diabetic retinopathy among youths with type 1 or type 2 diabetes throughout the United States. Ophthalmology 124(4):424–430. https://doi.org/10.1016/j.ophtha.2016.10.031

    Article  PubMed  Google Scholar 

  13. Hartig SM (2013) Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb1415s102

  14. Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):Oct362–Oct370. https://doi.org/10.1167/iovs.15-18904

    Article  PubMed  PubMed Central  Google Scholar 

  15. Americal Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90. https://doi.org/10.2337/dc14-S081

    Article  Google Scholar 

  16. Liese AD, D'Agostino RB Jr, Hamman RF, Kilgo PD, Lawrence JM, Liu LL, Loots B, Linder B, Marcovina S, Rodriguez B, Standiford D, Williams DE (2006) The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 118(4):1510–1518. https://doi.org/10.1542/peds.2006-0690

    Article  PubMed  Google Scholar 

  17. Vandewalle CL, Coeckelberghs MI, De Leeuw IH, Du Caju MV, Schuit FC, Pipeleers DG, Gorus FK (1997) Epidemiology, clinical aspects, and biology of IDDM patients under age 40 years. Comparison of data from Antwerp with complete ascertainment with data from Belgium with 40% ascertainment. The Belgian Diabetes Registry. Diabetes Care 20(10):1556–1561

    Article  CAS  PubMed  Google Scholar 

  18. Harris MI (1993) Undiagnosed NIDDM: clinical and public health issues. Diabetes Care 16(4):642–652

    Article  CAS  PubMed  Google Scholar 

  19. Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond) 2:17. https://doi.org/10.1186/s40662-015-0026-2

    Article  Google Scholar 

  20. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, Haffner S, Hamman RF, Ikram MK, Kayama T, Klein BE, Klein R, Krishnaiah S, Mayurasakorn K, O'Hare JP, Orchard TJ, Porta M, Rema M, Roy MS, Sharma T, Shaw J, Taylor H, Tielsch JM, Varma R, Wang JJ, Wang N, West S, Xu L, Yasuda M, Zhang X, Mitchell P, Wong TY (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564. https://doi.org/10.2337/dc11-1909

    Article  PubMed  PubMed Central  Google Scholar 

  21. Scarinci F, Nesper PL, Fawzi AA (2016) Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 168:129–138. https://doi.org/10.1016/j.ajo.2016.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee J, Moon BG, Cho AR, Yoon YH (2016) Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology 123(11):2368–2375. https://doi.org/10.1016/j.ophtha.2016.07.010

    Article  PubMed  Google Scholar 

  23. Rodrigues TM, Marques JP, Soares M, Simao S, Melo P, Martins A, Figueira J, Murta JN, Silva R (2019) Macular OCT-angiography parameters to predict the clinical stage of nonproliferative diabetic retinopathy: an exploratory analysis. Eye (Lond) 33:1240–1247. https://doi.org/10.1038/s41433-019-0401-7

    Article  Google Scholar 

  24. Carnevali A, Sacconi R, Corbell E, Tomasso L, Querques L, Zerbini G, Scorcia V, Bandello F, Querques G (2017) Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol 54(7):695–702. https://doi.org/10.1007/s00592-017-0996-8

    Article  CAS  PubMed  Google Scholar 

  25. Inanc M, Tekin K, Kiziltoprak H, Ozalkak S, Doguizi S, Aycan Z (2019) Changes in retinal microcirculation precede the clinical onset of diabetic retinopathy in children with type 1 diabetes mellitus. Am J Ophthalmol 207:37–44. https://doi.org/10.1016/j.ajo.2019.04.011

    Article  PubMed  Google Scholar 

  26. Garrity ST, Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2017) Quantitative analysis of three distinct retinal capillary plexuses in healthy eyes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(12):5548–5555. https://doi.org/10.1167/iovs.17-22036

    Article  CAS  PubMed  Google Scholar 

  27. Lavia C, Bonnin S, Maule M, Erginay A, Tadayoni R, Gaudric A (2019) Vessel density of superficial, intermediate, and deep capillary plexuses using optical coherence tomography angiography. Retina 39(2):247–258. https://doi.org/10.1097/iae.0000000000002413

    Article  PubMed  Google Scholar 

  28. Feldman-Billard S, Larger E, Massin P (2018) Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. Diabetes Metab 44(1):4–14. https://doi.org/10.1016/j.diabet.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Chan S, Yang JY, You B, Wang YX, Jonas JB, Wei WB (2016) Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol 168:95–109. https://doi.org/10.1016/j.ajo.2016.05.005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hee Yoon.

Ethics declarations

Disclaimer

All authors have not published or submitted any related papers of the present study.

Conflict of interest

Young Hee Yoon was supported by grants from the Ministry of Science, ICT, and Future Planning, Republic of Korea (NRF-2017R1D1A1B05028221) and has served on a consultant for Alcon, Bayer, and Allergan and has received consultancy fees from these companies. She has received payments for lectures from Bayer and Allergan. The following authors have no financial disclosures: Eoi Jong Seo, Taewoong Um, and Yoon Jeon Kim.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional review board of Asan Medical Center and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent not was required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Um, T., Seo, E.J., Kim, Y.J. et al. Optical coherence tomography angiography findings of type 1 diabetic patients with diabetic retinopathy, in comparison with type 2 patients. Graefes Arch Clin Exp Ophthalmol 258, 281–288 (2020). https://doi.org/10.1007/s00417-019-04517-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04517-6

Keywords

Navigation