Skip to main content

Advertisement

Log in

The effect of nifedipine on retinal venous pressure of glaucoma patients with the Flammer-Syndrome

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose was to measure the retinal venous pressure (RVP) in both eyes of primary open-angle glaucoma (POAG) patients before and 3 weeks after treatment with low-dosed Nifedipine.

Methods

This retrospective study included 20 POAG patients who were treated with Nifedipine (5 mg daily) and 20 untreated control POAG patients. In both the treated and untreated control group, a distinction was made between those patients who had the Flammer-Syndrome (FS) and those who did not. The RVP was measured in all patients bilaterally at baseline and 3 weeks later by means of contact lens ophthalmodynamometry and the RVP measurements of the treated POAG patients were compared to the RVPs of the untreated POAG controls. Ophthalmodynamometry is done by applying an increasing force on the eye via a contact lens. The minimum force required to induce a venous pulsation is called the ophthalmodynamometric force (ODF). The RVP is defined and calculated as the sum of ODF and intraocular pressure (IOP) [RVP = ODF + IOP].

Results

The RVP decreased significantly after 3 weeks in both eyes of patients treated with low-dosed Nifedipine compared to the untreated group (mean decrease of 12.5 mmHg (SD 12.5), P < 0.001). A larger response to therapy was found in patients with the FS compared to patients lacking the FS (mean decrease of 16.07 vs. 7.28 mmHg, confidence Interval (CI): 5.2 to 9.3 vs. 12.3 to 19.7; P < 0.001). No significant differences were accounted for in the IOP’s of the patients after treatment. In the untreated control group, no significant differences were accounted for either in the RVP or the IOP after 3 weeks.

Conclusions

Treatment with low-dosed Nifedipine decreases RVP in both eyes of glaucoma patients, particularly in those with the Flammer-Syndrome. This effect may be due to the partial inhibition of Endothelin-1 (ET-1) by Nifedipine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Noll G, Luscher TF (1998) Comparative pharmacological properties among calcium channel blockers: T-channel versus L-channel blockade. Cardiology 89(Suppl 1):10–15

    Article  CAS  PubMed  Google Scholar 

  2. Magnon M, Gallix P, Cavero I (1995) Intervessel (arteries and veins) and heart/vessel selectivities of therapeutically used calcium entry blockers: variable, vessel-dependent indexes. J Pharmacol Exp Ther 275(3):1157–1166

    CAS  PubMed  Google Scholar 

  3. Sung JY, Choi HC (2012) Nifedipine inhibits vascular smooth muscle cell proliferation and reactive oxygen species production through AMP-activated protein kinase signaling pathway. Vasc Pharmacol 56(1–2):1–8. doi:10.1016/j.vph.2011.06.001

    Article  CAS  Google Scholar 

  4. Wynne BM, Chiao CW, Webb RC (2009) Vascular smooth muscle cell signaling mechanisms for contraction to angiotensin II and endothelin-1. J Am Soc Hypertens JASH 3(2):84–95. doi:10.1016/j.jash.2008.09.002

    Article  Google Scholar 

  5. Flammer J, Mozaffarieh M (2013) Basic sciences in ophthalmology physics and chemistry. Springer, Berlin

    Book  Google Scholar 

  6. Maneli M, Josef F (2009) Ocular blood flow and glaucomatous optic neuropathy. Springer, Berlin

    Google Scholar 

  7. Emre M, Orgul S, Haufschild T, Shaw SG, Flammer J (2005) Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol 89(1):60–63. doi:10.1136/bjo.2004.046755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gass A, Flammer J, Linder L, Romerio SC, Gasser P, Haefeli WE (1997) Inverse correlation between endothelin-1-induced peripheral microvascular vasoconstriction and blood pressure in glaucoma patients. Graefe’s archive for clinical and experimental ophthalmology. Graefes Arch Clin Exp Ophthalmol 235(10):634–638

    Article  CAS  PubMed  Google Scholar 

  9. Lee NY, Park HY, Na KS, Park SH, Park CK (2013) Association between heart rate variability and systemic endothelin-1 concentration in normal-tension glaucoma. Curr Eye Res 38(4):516–519. doi:10.3109/02713683.2012.745881

    Article  CAS  PubMed  Google Scholar 

  10. Choritz L, Machert M, Thieme H (2012) Correlation of endothelin-1 concentration in aqueous humor with intraocular pressure in primary open angle and pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 53(11):7336–7342. doi:10.1167/iovs. 12-10216

    Article  CAS  PubMed  Google Scholar 

  11. Flammer J, Konieczka K, Flammer AJ (2013) The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J 4(1):14. doi:10.1186/1878-5085-4-14

    Article  PubMed Central  PubMed  Google Scholar 

  12. Haefliger IO, Flammer J, Luscher TF (1992) Nitric oxide and endothelin-1 are important regulators of human ophthalmic artery. Invest Ophthalmol Vis Sci 33(7):2340–2343

    CAS  PubMed  Google Scholar 

  13. Meyer P, Flammer J, Luscher TF (1993) Endothelium-dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins. Invest Ophthalmol Vis Sci 34(13):3614–3621

    CAS  PubMed  Google Scholar 

  14. Schmetterer L, Findl O, Strenn K, Jilma B, Graselli U, Eichler HG, Wolzt M (1997) Effects of endothelin-1 (ET-1) on ocular hemodynamics. Curr Eye Res 16(7):687–692

    Article  CAS  PubMed  Google Scholar 

  15. Stokely ME, Yorio T, King MA (2005) Endothelin-1 modulates anterograde fast axonal transport in the central nervous system. J Neurosci Res 79(5):598–607. doi:10.1002/jnr.20383

    Article  CAS  PubMed  Google Scholar 

  16. Taniguchi T, Shimazawa M, Sasaoka M, Shimazaki A, Hara H (2006) Endothelin-1 impairs retrograde axonal transport and leads to axonal injury in rat optic nerve. Curr Neurovasc Res 3(2):81–88

    Article  CAS  PubMed  Google Scholar 

  17. Prasanna G, Krishnamoorthy R, Clark AF, Wordinger RJ, Yorio T (2002) Human optic nerve head astrocytes as a target for endothelin-1.INVEST. OPHTH VIS SCI 43(8):2704–2713

    Google Scholar 

  18. Fraenkl SA, Mozaffarieh M, Flammer J (2010) Retinal vein occlusions: the potential impact of a dysregulation of the retinal veins. EPMA J 1(2):253–261. doi:10.1007/s13167-010-0025-2

    Article  PubMed Central  PubMed  Google Scholar 

  19. Jonas JB (2003) Central retinal artery and vein collapse pressure in eyes with chronic open angle glaucoma. Br J Ophthalmol 87(8):949–951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Morgan WH, Balaratnasingam C, Hazelton ML, House PH, Cringle SJ, Yu DY (2005) The force required to induce hemivein pulsation is associated with the site of maximum field loss in glaucoma. Invest Ophthalmol Vis Sci 46(4):1307–1312. doi:10.1167/iovs. 04-1126

    Article  PubMed  Google Scholar 

  21. Morgan WH, Hazelton ML, Balaratnasingamm C, Chan H, House PH, Barry CJ, Cringle SJ, Yu DY (2009) The association between retinal vein ophthalmodynamometric force change and optic disc excavation. Br J Ophthalmol 93(5):594–596. doi:10.1136/bjo.2008.149963

    Article  CAS  PubMed  Google Scholar 

  22. Stodtmeister R (2008) The pulsation and the pressure of the central retinal vein and their relation to glaucoma damage and therapy. Klin Monbl Augenheilkd 225(7):632–636. doi:10.1055/s-2008-1027233

    Article  CAS  PubMed  Google Scholar 

  23. Stodtmeister R, Ventzke S, Spoerl E et al (2013) Enhanced pressure in the central retinal vein decreases the perfusion pressure in the prelaminar region of the optic nerve head. Invest Ophthalmol Vis Sci 54:4698–4704

    Article  PubMed  Google Scholar 

  24. Meyer P, Lang MG, Flammer J, Luscher TF (1995) Effects of calcium channel blockers on the response to endothelin-1, bradykinin and sodium nitroprusside in porcine ciliary arteries. Exp Eye Res 60(5):505–510

    Article  CAS  PubMed  Google Scholar 

  25. Gasser P, Flammer J (1990) Short- and long-term effect of nifedipine on the visual field in patients with presumed vasospasm. J Int Med Res 18(4):334–339

    CAS  PubMed  Google Scholar 

  26. Guthauser U, Flammer J, Niesel P (1987) The relationship between the visual field and the optic nerve head in glaucomas. Graefe’s archive for clinical and experimental ophthalmology. Graefes Arch Clin Exp Ophthalmol 225(2):129–132

    Article  CAS  PubMed  Google Scholar 

  27. Strenn K, Matulla B, Wolzt M, Findl O, Bekes MC, Lamsfuss U, Graselli U, Rainer G, Menapace R, Eichler HG, Schmetterer L (1998) Reversal of endothelin-1-induced ocular hemodynamic effects by low-dose nifedipine in humans. Clin Pharmacol Ther 63(1):54–63. doi:10.1016/S0009-9236(98)90121-7

    Article  CAS  PubMed  Google Scholar 

  28. Konieczka K, Ritch R, Traverso CE, Kim DM, Kook MS, Gallino A, Golubnitschaja O, Erb C, Reitsamer HA, Kida T, Kurysheva N, Yao K (2014) Flammer syndrome. EPMA J 5(1):11. doi:10.1186/1878-5085-5-11

    Article  PubMed Central  PubMed  Google Scholar 

  29. Fang L, Baertschi M, Mozaffarieh M (2014) The effect of flammer-syndrome on retinal venous pressure. BMC Ophthalmol 14:121. doi:10.1186/1471-2415-14-121

    Article  PubMed Central  PubMed  Google Scholar 

  30. Mozaffarieh M, Fontana Gasio P, Schotzau A, Orgul S, Flammer J, Krauchi K (2010) Thermal discomfort with cold extremities in relation to age, gender, and body mass index in a random sample of a Swiss urban population. Popul Health Metr 8:17. doi:10.1186/1478-7954-8-17

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pache M, Krauchi K, Cajochen C, Wirz-Justice A, Dubler B, Flammer J, Kaiser HJ (2001) Cold feet and prolonged sleep-onset latency in vasospastic syndrome. Lancet 358(9276):125–126. doi:10.1016/S0140-6736(01)05344-2

    Article  CAS  PubMed  Google Scholar 

  32. Teuchner B, Orgul S, Ulmer H, Haufschild T, Flammer J (2004) Reduced thirst in patients with a vasospastic syndrome. Acta Ophthalmol Scand 82(6):738–740. doi:10.1111/j.1600-0420.2004.00376.x

    Article  PubMed  Google Scholar 

  33. Gasser P, Meienberg O (1991) Finger microcirculation in classical migraine. A video-microscopic study of nailfold capillaries. Eur J Neurol 31(3):168–171

    Article  CAS  Google Scholar 

  34. Orgul S, Kaiser HJ, Flammer J, Gasser P (1995) Systemic blood pressure and capillary blood-cell velocity in glaucoma patients: a preliminary study. Eur J Ophthalmol 5(2):88–91

    CAS  PubMed  Google Scholar 

  35. Mozaffarieh M, Hauenstein D, Schoetzau A, Konieczka K, Flammer J (2010) Smell perception in normal tension glaucoma patients. Mol Vis 16:506–510

    PubMed Central  PubMed  Google Scholar 

  36. Löw UG (2002) Kalibrierung des Kontaktglasdynamometers an enukleierten Schweineaugen und klinischer Vergleich zwischen dem Kontaktglasdynamometer und der Smartlens. Medizinische Fakultaet der Universitaet des Saarlandes. Ref Type: Thesis/Dissertation

  37. Morgan WH, Cringle SJ, Kang MH et al (2010) Optimizing the calibration and interpretation of dynamic ocular force measurements. Graefes Arch Clin Exp Ophthalmol 248:401–407

    Article  PubMed  Google Scholar 

  38. Geyer O, Neudorfer M, Kessler A, Firsteter E, Lazar M, Almog Y (1996) Effect of oral nifedipine on ocular blood flow in patients with low tension glaucoma. Br J Ophthalmol 80(12):1060–1062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Haufschild T, Prunte C, Messerli J, Flammer J (2004) Increased endothelin-1 plasma level in young adults with retinal vascular occlusive diseases. Klin Monbl Augenheilkd 221(5):357–359. doi:10.1055/s-2004-812813

    Article  CAS  PubMed  Google Scholar 

  40. Lee NY, Park HY, Park CK, Ahn MD (2012) Analysis of systemic endothelin-1, matrix metalloproteinase-9, macrophage chemoattractant protein-1, and high-sensitivity C-reactive protein in normal-tension glaucoma. Curr Eye Res 37(12):1121–1126. doi:10.3109/02713683.2012.725798

    Article  CAS  PubMed  Google Scholar 

  41. Lang MG, Zhu P, Meyer P, Noll G, Haefliger IO, Flammer J, Luscher TF (1997) Amlodipine and benazeprilat differently affect the responses to endothelin-1 and bradykinin in porcine ciliary arteries: effects of a low and high dose combination. Curr Eye Res 16(3):208–213

    Article  CAS  PubMed  Google Scholar 

  42. Toriu N, Sasaoka M, Shimazawa M, Sugiyama T, Hara H (2001) Effects of lomerizine, a novel Ca2+ channel blocker, on the normal and endothelin-1-disturbed circulation in the optic nerve head of rabbits. J Ocul Pharmacol Ther 17(2):131–149. doi:10.1089/10807680151125456

    Article  CAS  PubMed  Google Scholar 

  43. Noguchi S, Kimura Y, Nitta A, Shimizu R, Kobayashi K, Aoki K, Maruyama Y, Isono H, Shimizu M (1992) Blood flow in the optic nervehead following intravenous administration of calcium antagonist. Nihon Ganka Gakkai Zasshi 96(8):967–972

    CAS  PubMed  Google Scholar 

  44. Tamaki Y, Araie M, Tomita K, Tomidokoro A (1996) Time-course of changes in nicardipine effects on microcirculation in retina and optic nerve head in living rabbit eyes. Jpn J Ophthalmol 40(2):202–211

    CAS  PubMed  Google Scholar 

  45. Gasser P, Flammer J, Mahler F (1988) The use of calcium antagonists in the treatment of ocular circulation symptoms in the framework of a vasospastic syndrome. Swiss Med Wkly 118(6):201–202

    CAS  Google Scholar 

  46. Koseki N, Araie M, Tomidokoro A, Nagahara M, Hasegawa T, Tamaki Y, Yamamoto S (2008) A placebo-controlled 3-year study of a calcium blocker on visual field and ocular circulation in glaucoma with low-normal pressure. Ophthalmology 115(11):2049–2057. doi:10.1016/j.ophtha.2008.05.015

    Article  PubMed  Google Scholar 

  47. Tomita G, Niwa Y, Shinohara H, Hayashi N, Yamamoto T, Kitazawa Y (1999) Changes in optic nerve head blood flow and retrobular hemodynamics following calcium-channel blocker treatment of normal-tension glaucoma. Int Ophthalmol 23(1):3–10

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria, educational grants, participation in speakers’ bureaus, membership, employment, consultancies, stock ownership, or other equity interest, expert testimony, or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneli Mozaffarieh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Turtschi, S. & Mozaffarieh, M. The effect of nifedipine on retinal venous pressure of glaucoma patients with the Flammer-Syndrome. Graefes Arch Clin Exp Ophthalmol 253, 935–939 (2015). https://doi.org/10.1007/s00417-015-3001-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3001-7

Keywords

Navigation