Skip to main content

Advertisement

Log in

The effects of ocular magnification on Spectralis spectral domain optical coherence tomography scan length

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to assess the effects of incorporating individual ocular biometry measures of corneal curvature, refractive error, and axial length on scan length obtained using Spectralis spectral domain optical coherence tomography (SD-OCT).

Methods

Two SD-OCT scans were acquired for 50 eyes of 50 healthy participants, first using the Spectralis default keratometry (K) setting followed by incorporating individual mean-K values. Resulting scan lengths were compared to predicted scan lengths produced by image simulation software, based on individual ocular biometry measures including axial length.

Results

Axial length varied from 21.41 to 29.04 mm. Spectralis SD-OCT scan lengths obtained with default-K ranged from 5.7 to 7.3 mm, and with mean-K from 5.6 to 7.6 mm. We report a stronger correlation of simulated scan lengths incorporating the subject’s mean-K value (ρ = 0.926, P < 0.0005) compared to Spectralis default settings (ρ = 0.663, P < 0.0005).

Conclusions

Ocular magnification appears to be better accounted for when individual mean-K values are incorporated into Spectralis SD-OCT scan acquisition versus using the device’s default-K setting. This must be considered when taking area measurements and lateral measurements parallel to the retinal surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  PubMed  Google Scholar 

  2. Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W (2004) Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78:1117–1125

    Article  CAS  PubMed  Google Scholar 

  3. Leung CK, Cheung CY, Weinreb RN, Lee G, Lin D, Pang CP, Lam DSC (2008) Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 49:4893–4897

    Article  PubMed  Google Scholar 

  4. Nassif N, Cense B, Hyle Park B, Yun SH, Chen TC, Bouma BE, Tearney GJ, Boer JFD (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29:480–482

    Article  PubMed  Google Scholar 

  5. Regatieri CV, Branchini L, Duker JS (2011) The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 42:S56

    Article  PubMed Central  PubMed  Google Scholar 

  6. Oh J, Smiddy WE, Flynn HW, Gregori G, Lujan B (2010) Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci 51:1651–1658

    Article  PubMed  Google Scholar 

  7. Mojana F, Cheng L, Bartsch D-UG, Silva GA, Kozak I, Nigam N, Freeman WR (2008) The role of abnormal vitreomacular adhesion in age-related macular degeneration: spectral optical coherence tomography and surgical results. Am J Ophthalmol 146:218–227

    Article  PubMed Central  PubMed  Google Scholar 

  8. Moreno-Montañés J, Olmo N, Alvarez A, García N, Zarranz-Ventura J (2010) Cirrus high-definition optical coherence tomography compared with stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci 51:335–343

    Article  PubMed  Google Scholar 

  9. Chakravarthy U, Williams M (2013) The royal college of ophthalmologists guidelines on AMD: executive summary. Eye 27:1429–1431

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lee S, Fallah N, Forooghian F, Ko A, Pakzad-Vaezi K, Merkur AB, Kirker AW, Albiani DA, Young M, Sarunic MV, Beg MF (2013) Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 54:2864–2871

    Article  PubMed  Google Scholar 

  11. Chiu SJ, Izatt JA, O’Connell RV, Winter KP, Toth CA, Farsiu S (2012) Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest Ophthalmol Vis Sci 53:53–61

    Article  PubMed  Google Scholar 

  12. Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2009) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye 24:251–258

    Article  PubMed  Google Scholar 

  13. Folgar FA, Yuan EL, Farsiu S, Toth CA (2014) Lateral and axial measurement differences between spectral-domain optical coherence tomography systems. J Biomed Opt 19:16014

    Article  PubMed  Google Scholar 

  14. Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367

    Article  CAS  PubMed  Google Scholar 

  15. Rudnicka AR, Burk ROW, Edgar DF, Fitzke FW (1998) Magnification characteristics of fundus imaging systems. Ophthalmology 105:2186–2192

    Article  CAS  PubMed  Google Scholar 

  16. Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82:643–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM (2008) Magnification characteristics of the optical coherence tomograph Stratus OCT 3000. Ophthalmic Physiol Opt 28:21–28

    Article  PubMed  Google Scholar 

  18. Almeida MS, Carvalho LA (2007) Different schematic eyes and their accuracy to the in vivo eye: a quantitative comparison study. Braz J Phys 37:378–387

    Article  Google Scholar 

  19. Leung CK, Cheng ACK, Chong KKL, Leung KS, Mohamed S, Lau CSL, Cheung CYL, Chu GC, Lai RYK, Pang CCP, Lam DSC (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48:3178–3183

    Article  PubMed  Google Scholar 

  20. Odell D, Dubis AM, Lever JF, Stepien KE, Carroll J (2011) Assessing errors inherent in OCT-derived macular thickness maps. J Ophthalmol. doi:10.1155/2011/692574

    PubMed Central  PubMed  Google Scholar 

  21. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL (2009) Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 18:501–505

    Article  PubMed Central  PubMed  Google Scholar 

  22. Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96:57–61

    Article  PubMed  Google Scholar 

  23. Bayraktar S, Bayraktar Z, Yilmaz ÃF (2001) Influence of scan radius correction for ocular magnification and relationship between scan radius with retinal nerve fiber layer thickness measured by optical coherence tomography. J Glaucoma 10:163–169

    Article  CAS  PubMed  Google Scholar 

  24. Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y (2003) Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 23:177–182

    Article  PubMed  Google Scholar 

  25. Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52:625–634

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, Hi A, Ohkubo S, Sugiyama K, Iwase A, Yoshimura N (2011) Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci 52:8769–8779

    Article  PubMed  Google Scholar 

  27. Kirby ML, Galea M, Loane E, Stack J, Beatty S, Nolan JM (2009) Foveal anatomic associations with the secondary peak and the slope of the macular pigment spatial profile. Invest Ophthalmol Vis Sci 50:1383–1391

    Article  PubMed  Google Scholar 

  28. Menke MN, Dabov S, Knecht P, Sturm V (2009) Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol 147:467–472

    Article  PubMed  Google Scholar 

  29. Atchinson DA, Smith G (2000) Schematic eyes. In: Optics of the human eye. Butterworth Heinemann, Oxford:pp 250–251

  30. Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 45:1716–1724

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nolan JM, Stringham JM, Beatty S, Snodderly DM (2008) Spatial profile of macular pigment and its relationship to foveal architecture. Invest Ophthalmol Vis Sci 49:2134–2142

    Article  PubMed  Google Scholar 

  32. Verkicharla PK, Mallen EAH, Atchison DA (2013) Repeatability and comparison of peripheral eye lengths with two instruments. Optom Vis Sci 90:215–222

    Article  PubMed  Google Scholar 

  33. Lam AKC, Chan R, Pang PCK (2001) The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster™. Ophthalmic Physiol Opt 21:477–483

    Article  CAS  PubMed  Google Scholar 

  34. Song H, Chui TYP, Zhong Z, Elsner AE, Burns SA (2011) Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest Ophthalmol Vis Sci 52:7376–7384

    Article  PubMed Central  PubMed  Google Scholar 

  35. Visser N, Berendschot T, Verbakel F, de Brabander J, Nuijts R (2012) Comparability and repeatability of corneal astigmatism measurements using different measurement technologies. J Cataract Refract Surg 38:1764–1770

    Article  PubMed  Google Scholar 

  36. Pesudovs K, Weisinger HS (2004) A comparison of autorefractor performance. Optom Vis Sci 81:554–558

    Article  PubMed  Google Scholar 

  37. Tan JC, Poinoosawmy D, Fitzke FW, Hitchings RA (2004) Magnification changes in scanning laser tomography. J Glaucoma 13:137–141

    Article  CAS  PubMed  Google Scholar 

  38. Röck T, Wilhelm B, Bartz-Schmidt KU, Röck D (2014) The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: A pilot study. Graefes Arch Clin Exp Ophthalmol 252:589–593

    Article  PubMed  Google Scholar 

  39. Patel NB, Wheat JL, Rodriguez A, Tran V, Harwerth RS (2012) Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optom Vis Sci 89:E652–E666

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Carl Zeiss Meditec for the use of the IOLMaster.

Conflict of interest

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (including honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interests; and expert testimony or patent licensing arrangements), or non-financial interest (including personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byki Huntjens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ctori, I., Gruppetta, S. & Huntjens, B. The effects of ocular magnification on Spectralis spectral domain optical coherence tomography scan length. Graefes Arch Clin Exp Ophthalmol 253, 733–738 (2015). https://doi.org/10.1007/s00417-014-2915-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2915-9

Keywords

Navigation