Skip to main content

Advertisement

Log in

Dehydroxymethylepoxyquinomicin, a novel nuclear factor–κB inhibitor, reduces chemokines and adhesion molecule expression induced by IL-1β in human corneal fibroblasts

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Dehydroxymethylepoxyquinomicin (DHMEQ) is derived from the antibiotic, epoxyquinomicin C, and is a novel low molecular weight nuclear factor-κB (NF-κB) inhibitor. We investigated the effects of DHMEQ on the expression of chemokines and the intercellular adhesion molecule (ICAM)-1 induced by proinflammatory cytokines in cultures of the human corneal fibroblasts (HCFs).

Methods

The cytotoxicity of DHMEQ on cultured HCFs was evaluated by cell proliferation assays. Cultures were exposed to interleukin (IL)-1β, and the production of IL-8 and monocyte chemoattractant protein (MCP)-1 was assessed by enzyme-linked immunosorbent assay. The degree of expression of ICAM-1 was measured by flow cytometry. The translocation of NF-κB p65 into the nucleus of HCFs was assessed by immunocytochemistry.

Results

DHMEQ was not toxic to cultured HCFs at doses up to 10 μg/ml. DHMEQ significantly suppressed the production of both IL-8 and MCP-1 in IL-1β-stimulated HCFs. In addition, DHMEQ down-regulated ICAM-1 expression in IL-1β-stimulated HCFs in a dose-dependent manner. DHMEQ inhibited the IL-1β-induced nuclear accumulation of p65, a component of NF-κB, in HCFs.

Conclusions

The suppression of inflammatory chemokines IL-8 and MCP-1 and inhibition of the expression of ICAM-1 in cultured HCFs by DHMEQ indicates that DHMEQ may have a therapeutic potential for treating ICAM-1 and chemokine-mediated corneal inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith RS, Smith TJ, Blieden TM, Phipps RP (1997) The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Am J Pathol 151:317–322

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Wilson SE, Mohan RR, Mohan RR, Ambrósio R Jr, Hong J, Lee J (2001) The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res 20:625–637

    Article  CAS  PubMed  Google Scholar 

  3. Fukuda K, Kumagai N, Fujitsu Y, Nishida T (2006) Fibroblasts as local immune modulators in ocular allergic disease. Allergol Int 55:121–129

    Article  CAS  PubMed  Google Scholar 

  4. Tran MT, Tellaetxe-Isusi M, Elner V, Strieter RM, Lausch RN, Oakes JE (1996) Proinflammatory cytokines induce RANTES and MCP-1 synthesis in human corneal keratocytes but not in corneal epithelial cells. Beta-chemokine synthesis in corneal cells. Invest Ophthalmol Vis Sci 37:987–996

    CAS  PubMed  Google Scholar 

  5. Lu Y, Fukuda K, Li Q, Kumagai N, Nishida T (2006) Role of nuclear factor-kappaB in interleukin-1-induced collagen degradation by corneal fibroblasts. Exp Eye Res 83:560–568

    Article  CAS  PubMed  Google Scholar 

  6. Li Q, Fukuda K, Lu Y, Nakamura Y, Chikama T, Kumagai N, Nishida T (2003) Enhancement by neutrophils of collagen degradation by corneal fibroblasts. J Leukoc Biol 74:412–419

    Article  CAS  PubMed  Google Scholar 

  7. Kondo Y, Fukuda K, Adachi Y, Nishida T (2008) Inhibition by a selective IkappaB kinase-2 inhibitor of interleukin-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture. Invest Ophthalmol Vis Sci 49:4850–4857

    Article  PubMed  Google Scholar 

  8. Xue ML, Wakefield D, Willcox MD, Lloyd AR, Di Girolamo N, Cole N, Thakur A (2003) Regulation of MMPs and TIMPs by IL-1beta during corneal ulceration and infection. Invest Ophthalmol Vis Sci 44:2020–2025

    Article  PubMed  Google Scholar 

  9. Biswas PS, Banerjee K, Kim B, Rouse BT (2004) Mice transgenic for IL-1 receptor antagonist protein are resistant to herpetic stromal keratitis: possible role for IL-1 in herpetic stromal keratitis pathogenesis. J Immunol 172:3736–3744

    Article  CAS  PubMed  Google Scholar 

  10. Fukuda M, Mishima H, Otori T (1997) Detection of interleukin-1 beta in the tear fluid of patients with corneal disease with or without conjunctival involvement. Jpn J Ophthalmol 41:63–66

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh S, Hayden MS (2008) New regulators of NF-kappa B in inflammation. Nat Rev Immunol 8:837–848

    Article  CAS  PubMed  Google Scholar 

  12. Roebuck KA, Carpenter LR, Lakshminarayanan V, Page SM, Moy JN, Thomas LL (1999) Stimulus-specific regulation of chemokine expression involves differential activation of the redox-responsive transcription factors AP-1 and NF-kappa B. J Leukoc Biol 65:291–298

    CAS  PubMed  Google Scholar 

  13. Okamoto H, Cujec TP, Yamanaka H, Kamatani N (2008) Molecular aspects of rheumatoid arthritis: role of transcription factors. FEBS J 275:4463–4470

    Article  CAS  PubMed  Google Scholar 

  14. Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    Article  CAS  PubMed  Google Scholar 

  15. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866

    Article  CAS  PubMed  Google Scholar 

  16. Blackwell TS, Christman JW (1997) The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 17:3–9

    Article  CAS  PubMed  Google Scholar 

  17. Ashar JN, Mathur A, Sangwan VS (2013) Immunosuppression for Mooren’s ulcer: evaluation of the stepladder approach–topical, oral and intravenous immunosuppressive agents. Br J Ophthalmol 97:1391–1394

    Article  PubMed  Google Scholar 

  18. Shimazaki J, Iseda A, Satake Y, Shimazaki-Den S (2012) Efficacy and safety of long-term corticosteroid eye drops after penetrating keratoplasty: a prospective, randomized, clinical trial. Ophthalmology 119:668–673

    Article  PubMed  Google Scholar 

  19. Vega MI, Martinez-Paniagua M, Jazirehi AR, Huerta-Yepez S, Umezawa K, Martinez-Maza O, Bonavida B (2008) The NF-kappa B inhibitors (bortezomib and DHMEQ) sensitize rituximab-resistant AIDS-B-non-Hodgkin lymphoma to apoptosis by various chemotherapeutic drugs. Leuk Lymphoma 49:1982–1994

    Article  CAS  PubMed  Google Scholar 

  20. Ariga A, Namekawa J, Matsumoto N, Inoue J, Umezawa K (2002) Inhibition of tumor necrosis factor-alpha -induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J Biol Chem 277:24625–24630

    Article  CAS  PubMed  Google Scholar 

  21. Kosaka T, Miyajima A, Kikuchi E, Horiguchi Y, Umezawa K, Ohigashi T, Nakashima J, Asano T, Oya M (2008) The novel NF-kappa B activation inhibitor dehydroxymethyl-epoxyquinomicin suppresses anti-Thy1.1-induced glomerulonephritis in rats. Nephron Exp Nephrol 110:e17–e24

    CAS  PubMed  Google Scholar 

  22. Nishimura D, Ishikawa H, Matsumoto K, Shibata H, Motoyoshi Y, Fukuta M, Kawashimo H, Goto T, Taura N, Ichikawa T, Hamasaki K, Nakao K, Umezawa K, Eguchi K (2006) DHMEQ, a novel NF-kappa B inhibitor, induces apoptosis and cell-cycle arrest in human hepatoma cells. Int J Oncol 29:713–719

    CAS  PubMed  Google Scholar 

  23. Wakamatsu K, Nanki T, Miyasaka N, Umezawa K, Kubota T (2005) Effect of a small molecule inhibitor of nuclear factor-kappa B nuclear translocation in a murine model of arthritis and cultured human synovial cells. Arthritis Res Ther 7:R1348–R1359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Umezawa K, Chaicharoenpong C (2002) Molecular design and biological activities of NF-kappa B inhibitors. Mol Cell 14:163–167

    CAS  Google Scholar 

  25. Kumagai N, Fukuda K, Nishida T (2000) Synergistic effect of TNF-alpha and IL-4 on the expression of thymus- and activation-regulated chemokine in human corneal fibroblasts. Biochem Biophys Res Commun 279:1–5

    Article  CAS  PubMed  Google Scholar 

  26. Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212

    CAS  PubMed  Google Scholar 

  27. Lu Y, Fukuda K, Nakamura Y, Kimura K, Kumagai N, Nishida T (2005) Inhibitory effect of triptolide on chemokine expression induced by proinflammatory cytokines in human corneal fibroblasts. Invest Ophthalmol Vis Sci 46:2346–2352

    Article  PubMed  Google Scholar 

  28. Kumagai N, Fukuda K, Fujitsu Y, Lu Y, Chikamoto N, Nishida T (2005) Lipopolysaccharide-induced expression of intercellular adhesion molecule-1 and chemokines in cultured human corneal fibroblasts. Invest Ophthalmol Vis Sci 46:114–120

    Article  PubMed  Google Scholar 

  29. Nishio H, Yaguchi T, Sugiyama J, Sumimoto H, Umezawa K, Iwata T, Susumu N, Fujii T, Kawamura N, Kobayashi A, Park J, Aoki D, Kawakami Y (2014) Immunosuppression through constitutively activated NF-kB signalling in human ovarian cancer and its reversal by an NF-kB inhibitor. Br J Cancer 110:2965–2974

    Article  CAS  PubMed  Google Scholar 

  30. Cardile V, Frasca G, Libra M, Caggia S, Umezawa K, Panico A, Malaponte G (2010) Dehydroxymethylepoxyquinomicin inhibits expression and production of inflammatory mediators in interleukin-1beta-induced human chondrocytes. Cell Physiol Biochem 25:543–550

    Article  CAS  PubMed  Google Scholar 

  31. Spandau UH, Toksoy A, Verhaart S, Gillitzer R, Kruse FE (2003) High expression of chemokines Gro-alpha (CXCL-1), IL-8 (CXCL-8), and MCP-1 (CCL-2) in inflamed human corneas in vivo. Arch Ophthalmol 121:825–831

    Article  CAS  PubMed  Google Scholar 

  32. Nagai N, Izumi-Nagai K, Oike Y, Oike Y, Koto T, Satofuka S, Ozawa Y, Yamashiro K, Inoue M, Tsubota K, Umezawa K, Ishida S (2007) Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappaB pathway. Invest Ophthalmol Vis Sci 48:4342–4350

    Article  PubMed  Google Scholar 

  33. Goldberg MF, Ferguson TA, Pepose JS (1994) Detection of cellular adhesion molecules in inflamed human corneas. Ophthalmology 101:161–168

    Article  CAS  PubMed  Google Scholar 

  34. Gagen D, Laubinger S, Li Z, Petrescu MS, Brown ES, Smith CW, Burns AR (2010) ICAM-1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the mouse. Exp Eye Res 91:676–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Iwata D, Kitaichi N, Miyazaki A, Iwabuchi K, Yoshida K, Namba KI, Ozaki M, Ohno S, Umezawa K, Yamashita K, Todo S, Ishida S, Onoe K (2009) Nuclear factor-{kappa} B inhibitor, dehydroxy methylepoxyquinomicin, ameliorates experimental autoimmune uveoretinitis in mice. Invest Ophthalmol Vis Sci 51:2077–2084

    Article  PubMed  Google Scholar 

  36. Funakoshi T, Yamashita K, Ichikawa N, Fukai M, Suzuki T, Goto R, Oura T, Kobayashi N, Katsurada T, Ichihara S, Ozaki M, Umezawa K, Todo S (2012) A novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates inflammatory colonic injury in mice. J Crohn’s Colitis 6:215–225

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ms. Nobuko Takahashi for her technical assistance and Professor Emeritus Duco Hamasaki of Bascom Palmer Eye Institute of the University of Miami for English editing.

Conflict of interest

This work was supported by Grant for Scientific Research from Kyorin University, Tokyo, Japan.

Commercial relationships: none

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Keino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inokawa, S., Watanabe, T., Keino, H. et al. Dehydroxymethylepoxyquinomicin, a novel nuclear factor–κB inhibitor, reduces chemokines and adhesion molecule expression induced by IL-1β in human corneal fibroblasts. Graefes Arch Clin Exp Ophthalmol 253, 557–563 (2015). https://doi.org/10.1007/s00417-014-2879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2879-9

Keywords

Navigation