Skip to main content

Advertisement

Log in

Inner retinal layer comparisons of eyes with exudative age-related macular degeneration and eyes with age-related macular degeneration and glaucoma

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The incidence of glaucoma increases with age, as does age-related macular degeneration (AMD), with the reported incidence of glaucoma among AMD subjects being 5.4 %. Optical coherence tomography (OCT) can detect glaucomatous changes in the inner retina with high sensitivity. The purpose of this study was to compare ganglion cell complex (GCC) parameters and the thickness of the peripapillary retinal nerve fiber layer (RNFL) in normal eyes to that observed in eyes with age-related macular degeneration (AMD) and eyes with both AMD and glaucoma.

Methods

The GCC components [GCC thickness, focal loss volume (FLV), and global loss volume (GLV)] and peripapillary RNFL thickness were measured using RTVue spectral-domain OCT (SD-OCT). The GCC and RNFL parameters of normal eyes, AMD eyes treated with different types of therapy, and AMD eyes with and without glaucoma were evaluated using nonparametric tests. Univariate and multivariate analyses were used to determine whether the GCC and RNFL parameters could be used to differentiate AMD eyes with glaucoma from those without glaucoma.

Results

Seventy-one normal eyes, 120 eyes with AMD, and 23 eyes with AMD and glaucoma were studied. The values of all GCC components were significantly different in the normal eyes from those observed in the eyes with AMD, except for the RNFL thicknesses. The GCC and RNFL parameters were not significantly different between the eyes receiving different types of therapy among the AMD groups. The RNFL thickness was significantly correlated with glaucoma diagnosis in AMD eyes.

Conclusions

These findings indicate that there is damage to the inner retinal layers in eyes with AMD. The RNFL thickness can be a useful parameter for differentiating eyes with AMD from eyes with both AMD and glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851

    PubMed Central  PubMed  Google Scholar 

  2. Padnick-Silver L, Weinberg AB, Lafranco FP, Macsai MS (2012) Pilot study for the detection of early exudative age-related macular degeneration with optical coherence tomography. Retina 32:1045–1056

    Article  PubMed  Google Scholar 

  3. Uyama M, Takahashi K, Ida N, Miyashiro M, Ando A, Takahashi A, Yamada E, Shirasu J, Nagai Y, Takeuchi M (2000) The second eye of Japanese patients with unilateral exudative age related macular degeneration. Br J Ophthalmol 84:1018–1023

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith EL III (2007) The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci 48:763–773

    Article  PubMed  Google Scholar 

  5. Rudnicka AR, Mt-Isa S, Owen CG, Cook DG, Ashby D (2006) Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci 47:4254–4261

    Article  PubMed  Google Scholar 

  6. Klein R, Klein BEK, Tomany SC, Meuer SM, Huang GH (2002) Ten-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 99:933–943

    Article  Google Scholar 

  7. Kreuger DE, Milton RC, Maunder LR (1980) The Framingham eye study: introduction to the monograph. Surv Ophthalmol 24:614–620

    Article  PubMed  CAS  Google Scholar 

  8. Rohrschneider K, Bültmann S, Springer C (2008) Use of fundus perimetry (microperimetry) to quantify macular sensitivity. Prog Retin Eye Res 27:536–548

    Article  PubMed  Google Scholar 

  9. Sunness JS, Schuchard RA, Shen N, Rubin GS, Dagnelie G, Haselwood DM (1995) Landmark-driven fundus perimetry using the scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci 36:1863–1874

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Dinc UA, Yenerel M, Gorgun E, Oncel M (2008) Assessment of macular function by microperimetry in intermediate age-related macular degeneration. Eur J Ophthalmol 18:595–600

    PubMed  CAS  Google Scholar 

  11. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314

    Article  PubMed Central  PubMed  Google Scholar 

  12. Mecklenburg L, Schraermeyer U (2007) An overview on the toxic morphological changes in the retinal pigment epithelium after systemic compound administration. Toxicol Pathol 35:252–267

    Article  PubMed  CAS  Google Scholar 

  13. Medeiros NE, Curcio CA (2001) Preservations of ganglion cell layer neurons in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:795–803

    PubMed  CAS  Google Scholar 

  14. Garner A, Sarks A, Sarks JP (1994) Degenerative and related disorders of the retina and choroid. In: Garner A, Klintworth GK (eds) Pathobiology of ocular disease, 2nd edn. Marcel Dekker, New York, pp 631–674

    Google Scholar 

  15. Takahashi K, Ogura Y, Ishibashi T, Shiraga F, Yuzawa M (2012) Treatment guidelines for age-related macular degeneration. Nippon Ganka Gakkai Zasshi 116:1150–1155

    PubMed  Google Scholar 

  16. Gloster J, Parry DG (1974) Use of photographs for measuring cupping in the optic disc. Br J Ophthalmol 58:850–862

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ (2002) The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 86:238–242

    Article  PubMed Central  PubMed  Google Scholar 

  18. Japan Glaucoma Society (2006) Guidelines for glaucoma, 2nd edn. Japan Glaucoma Society, Tokyo, pp 55–60

    Google Scholar 

  19. Na JH, Sung KR, Baek S, Sun JH, Lee Y (2011) Macular and retinal nerve fiber layer thickness: which is more helpful in the diagnosis of glaucoma? Invest Ophthalmol Vis Sci 52:8094–8101

    Article  PubMed  Google Scholar 

  20. Urdan TC (2005) T-Tests. In: Riegert D (ed) Statistics in plain english. Lawrence Erlbaum Associates Inc, Mahwah, pp 90–94

    Google Scholar 

  21. Lehman A, O’Rourke N, Hatcher L, Stepanski EJ (2005) Measures of bivariate association. In: JMP for basic univariate and multivariate statistics: A step-by-step guide. SAS Institute Inc., Cary, pp 103–136

    Google Scholar 

  22. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  PubMed  CAS  Google Scholar 

  23. Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, Roudot-Thoraval F, Bandello F, Souied E (2013) Hyperrreflective dots: a new spectral domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 229:32–37

    Article  PubMed  Google Scholar 

  24. Villegas-Pérez MP, Lawrence JM, Vidal-Sanz M, Lavail MM, Lund RD (1998) Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. J Comp Neurol 392:58–77

    Article  PubMed  Google Scholar 

  25. Kashiwagi K, Iizuka Y, Tanaka Y, Araie M, Suzuki Y, Tsukahara S (2004) Molecular and cellular reactions of retinal ganglion cells and retinal glial cells under centrifugal force loading. Invest Ophthalmol Vis Sci 45:3778–3786

    Article  PubMed  Google Scholar 

  26. Morgan JE (2000) Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye 14:437–444

    Article  PubMed  Google Scholar 

  27. Menke MN, Dabov S, Knecht P, Sturm V (2011) Reproducibility of retinal thickness measurements in patients with age-related macular degeneration using 3D Fourier-domain optical coherence tomography (OCT) (Topcon 3D-OCT 100). Acta Ophthalmol 89:346–351

    Article  PubMed  Google Scholar 

  28. Blair MP, Gupta M, Blair NP, Shahidi M (2010) Association between retinal thickness and retinal pigment epithelium elevation in age-related macular degeneration. Ophthalmic Surg Lasers Imaging 41:175–181

    Article  PubMed  Google Scholar 

  29. Horsley MB, Mandava N, Maycotte MA, Kahook MY (2010) Retinal nerve fiber layer thickness in patients receiving chronic anti-vascular endothelial growth factor therapy. Am J Ophthalmol 150:558–561

    Article  PubMed  CAS  Google Scholar 

  30. Nishimura T, Machida S, Harada T, Kurosaka D (2012) Retinal ganglion cell function after repeated intravitreal injections of ranibizumab in patients with age-related macular degeneration. Clin Ophthalmol 6:1073–1082

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Schmidt-Erfurth U, Laqua H, Schlötzer-Schrehard U, Viestenz A, Naumann GOH (2002) Histopathological changes following photodynamic therapy in human eyes. Arch Ophthalmol 120:835–844

    PubMed  Google Scholar 

  32. Tzekov R, Lin T, Zhang KM, Jackson B, Oyejide A, Orilla W, Kulkarni AD, Kuppermann BD, Wheeler L, Burke J (2006) Ocular changes after photodynamic therapy. Invest Ophthalmol Vis Sci 47:377–385

    Article  PubMed  Google Scholar 

  33. Hayashi H, Yamashiro K, Tsujikawa A, Ota M, Otani A, Yoshimura N (2009) Association between foveal photoreceptor integrity and visual outcome in neovascular age-related macular degeneration. Am J Ophthalmol 148:83–89

    Article  PubMed  Google Scholar 

  34. Reeves BC, Harding SP, Langham J, Grieve R, Tomlin K, Walker J, Guerriero C, Carpenter J, Patton WP, Muldrew KA, Peto T, Chakravarthy U (2012) Verteporfin photodynamic therapy for neovascular age-related macular degeneration: cohort study for the UK. Health Technol Assess 16(i-xii):1–200

    Google Scholar 

  35. Dupont WD (2002) Fixed effects analysis of variance. In: Statistical modelling for biomedical researchers: a simple introduction to the analysis of complex data. Cambridge University Press, Cambridge, pp 320–329

    Google Scholar 

  36. Hill T, Lewicki P (2006) Basic statistics and tables. In: Statistics: methods and applications, a comprehensive reference for science, industry, and data mining (1st edition). StatSoft Inc., Tulsa, pp 25–26

    Google Scholar 

  37. Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, Kim YJ, Park SB, Hong HE, Kook MS (2010) Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci 51:1446–1452

    Article  PubMed  Google Scholar 

  38. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K (2011) Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma 20:252–259

    Article  PubMed  Google Scholar 

  39. Chen HY, Wang TH, Lee YM, Hung TJ (2005) Retinal nerve fiber layer thickness measured by optical coherence tomography and its correlation with visual field defects in early glaucoma. J Formos Med Assoc 104:927–934

    PubMed  Google Scholar 

  40. Pepe MS, Cai T, Longton G (2006) Combining predictors for classification using the area under the receiver operating characteristic curve. Biometrics 62:221–229

    Article  PubMed  Google Scholar 

  41. Medeiros FA, Sample PA, Zangwill LM, Liebmann JM, Girkin CA, Weinreb RN (2006) A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma. Invest Ophthalmol Vis Sci 47:2520–2527

    Article  PubMed  Google Scholar 

  42. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  43. Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY (2010) Structure–function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci 51:4646–4651

    Article  PubMed  Google Scholar 

  44. Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y (2012) The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma Jun 4 [Epub ahead of print]. doi:10.1097/IJG.0b013e318259b2e1

  45. Tan O, Li G, Lu ATH, Varma R, Huang D (2008) Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956

    Article  PubMed Central  PubMed  Google Scholar 

  46. Shuttleworth GN, Luhishi EA, Harrad RA (1998) Do patients with age related maculopathy and cataract benefit from cataract surgery? Br J Ophthalmol 82:611–616

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. The CATT Research Group, Martin DF, Maguire MG, Ying G, Grunwald JE, Fine SL, Jaffe GJ (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364:1897–1908

    Article  PubMed  CAS  Google Scholar 

Download references

Financial disclosure

The authors have no conflicts of interest with regard to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulfah Rimayanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rimayanti, U., Kiuchi, Y., Yamane, K. et al. Inner retinal layer comparisons of eyes with exudative age-related macular degeneration and eyes with age-related macular degeneration and glaucoma. Graefes Arch Clin Exp Ophthalmol 252, 563–570 (2014). https://doi.org/10.1007/s00417-013-2496-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2496-z

Keywords

Navigation