Skip to main content

Advertisement

Log in

Segmental reproducibility of retinal blood flow velocity measurements using retinal function imager

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate the reproducibility of blood flow velocity measurements of individual retinal blood vessel segments using retinal function imager (RFI).

Methods

Eighteen eyes of 15 healthy subjects were enrolled prospectively at three centers. All subjects underwent RFI imaging in two separate sessions 15 min apart by a single experienced photographer at each center. An average of five to seven serial RFI images were obtained. All images were transferred electronically to one center, and were analyzed by a single observer. Multiple blood vessel segments (each shorter than 100 μm) were co-localized on first and second session images taken at different times of the same fundus using built-in software. Velocities of corresponding segments were determined, and then the inter-session reproducibility of flow velocity was assessed by the concordance correlation co-efficient (CCC), coefficient of reproducibility (CR), and coefficient of variance (CV).

Results

Inter-session CCC for flow velocity was 0.97 (95% confidence interval (CI), 0.966 to 0.9797). The CR was 1.49 mm/sec (95% CI, 1.39 to 1.59 mm/sec), and CV was 10.9%. The average arterial blood flow velocity was 3.16 mm/sec, and average venous blood flow velocity was 3.15 mm/sec. The CR for arterial and venous blood flow velocity was 1.61 mm/sec and 1.27 mm/sec respectively.

Conclusion

RFI provides reproducible measurements for retinal blood flow velocity for individual blood vessel segments, with 10.9% variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shoshani Y, Harris A, Shoja MM, Arieli Y, Ehrlich R, Primus S, Ciulla T, Cantor A, Wirostko B, Siesky BA (2012) Impaired ocular blood flow regulation in patients with open-angle glaucoma and diabetes. Clin Experiment Ophthalmol 40:697–705

    Article  PubMed  Google Scholar 

  2. Chen HC, Gupta A, Wiek J, Kohner EM (1998) Retinal blood flow in nonischemic central retinal vein occlusion. Ophthalmology 105:772–775

    Article  CAS  PubMed  Google Scholar 

  3. Williamson TH, Baxter GM (1994) Central retinal vein occlusion, an investigation by color Doppler imaging. Blood velocity characteristics and prediction of iris neovascularization. Ophthalmology 101:1362–1372

    Article  CAS  PubMed  Google Scholar 

  4. Friedman E, Krupsky S, Lane AM, Oak SS, Friedman ES, Egan K, Gragoudas ES (1995) Ocular blood flow velocity in age-related macular degeneration. Ophthalmology 102:640–646

    Article  CAS  PubMed  Google Scholar 

  5. Deokule S, Vizzeri G, Boehm A, Bowd C, Weinreb RN (2010) Association of visual field severity and parapapillary retinal blood flow in open-angle glaucoma. J Glaucoma 19:293–298

    PubMed  Google Scholar 

  6. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393

    Article  PubMed  Google Scholar 

  7. Chen CS, Miller NR (2007) Ocular ischemic syndrome: review of clinical presentations, etiology, investigation, and management. Compr Ophthalmol Update 8:17–28

    PubMed  Google Scholar 

  8. Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Fortune B, Cull G, McElwain KM, Cioffi GA (2007) Microspheres method for ocular blood flow measurement in rats: size and dose optimization. Exp Eye Res 84:108–117

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Grant C, Fortune B, Cioffi GA (2008) Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique. Exp Eye Res 86:908–913

    Article  CAS  PubMed  Google Scholar 

  11. Chemtob S, Beharry K, Rex J, Chatterjee T, Varma DR, Aranda JV (1991) Ibuprofen enhances retinal and choroidal blood flow autoregulation in newborn piglets. Invest Ophthalmol Vis Sci 32:1799–1807

    CAS  PubMed  Google Scholar 

  12. Horio N, Horiguchi M (2004) Retinal blood flow analysis using intraoperative video fluorescein angiography combined with optical fiber-free intravitreal surgery system. Am J Ophthalmol 138:1082–1083

    Article  PubMed  Google Scholar 

  13. Yang Y, Kim S, Kim J (1997) Fluorescent dots in fluorescein angiography and fluorescein leukocyte angiography using a scanning laser ophthalmoscope in humans. Ophthalmology 104:1670–1676

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Kim S, Kim J (1997) Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits. Graefes Arch Clin Exp Ophthalmol 235:27–31

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y, Moon S, Lee S, Kim J (1996) Measurement of retinal blood flow with fluorescein leucocyte angiography using a scanning laser ophthalmoscope in rabbits. Br J Ophthalmol 80:475–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dimitrova G, Kato S (2010) Color Doppler imaging of retinal diseases. Surv Ophthalmol 55:193–214

    Article  PubMed  Google Scholar 

  17. Rechtman E, Harris A, Kumar R, Cantor LB, Ventrapragada S, Desai M, Friedman S, Kagemann L, Garzozi HJ (2003) An update on retinal circulation assessment technologies. Curr Eye Res 27:329–343

    Article  PubMed  Google Scholar 

  18. Wang Y, Lu A, Gil-Flamer J, Tan O, Izatt JA, Huang D (2009) Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br J Ophthalmol 93:634–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jonescu-Cuypers CP, Harris A, Wilson R, Kagemann L, Mavroudis LV, Topouzis F, Coleman AL (2004) Reproducibility of the Heidelberg retinal flowmeter in determining low perfusion areas in peripapillary retina. Br J Ophthalmol 88:1266–1269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yoshida A, Feke GT, Mori F, Nagaoka T, Fujio N, Ogasawara H, Konno S, McMeel JW (2003) Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument. Am J Ophthalmol 135:356–361

    Article  PubMed  Google Scholar 

  21. Nagahara M, Tamaki Y, Tomidokoro A, Araie M (2011) In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. Invest Ophthalmol Vis Sci 52:87–92

    Article  PubMed  Google Scholar 

  22. Kagemann L, Wollstein G, Ishikawa H, Townsend KA, Schuman JS (2009) Validation of spectral domain optical coherence tomographic Doppler shifts using an in vitro flow model. Invest Ophthalmol Vis Sci 50:702–706

    Article  PubMed Central  PubMed  Google Scholar 

  23. Burgansky-Eliash Z, Nelson DA, Bar-Tal OP, Lowenstein A, Grinvald A, Barak A (2010) Reduced retinal blood flow velocity in diabetic retinopathy. Retina 30:765–773

    Article  PubMed  Google Scholar 

  24. Birger Y, Blumenfeld O, Bartov E, Burgansky-Eliash Z (2011) Reduced retinal blood flow velocity in severe hyperlipidemia measured by the retinal function imager. Graefes Arch Clin Exp Ophthalmol 249:1587–1590

    Article  PubMed  Google Scholar 

  25. Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Krastel H, Jonas JB (2011) Retinal blood flow velocity measured by retinal function imaging in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 249:1855–1858

    Article  PubMed  Google Scholar 

  26. Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Jonas JB (2011) Central serous chorioretinopathy shows reduced retinal flow circulation in retinal function imaging (RFI). Acta Ophthalmol 89:e479–e482

    Article  PubMed  Google Scholar 

  27. Barak A, Burgansky-Eliash Z, Barash H, Nelson DA, Grinvald A, Loewenstein A (2012) The effect of intravitreal bevacizumab (Avastin) injection on retinal blood flow velocity in patients with choroidal neovascularization. Eur J Ophthalmol 22:423–430

    Article  PubMed  Google Scholar 

  28. Landa G, Rosen RB (2010) New patterns of retinal collateral circulation are exposed by a retinal functional imager (RFI). Br J Ophthalmol 94:54–58

    Article  CAS  PubMed  Google Scholar 

  29. Landa G, Jangi AA, Garcia PM, Rosen RB (2012) Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI). Int Ophthalmol 32:211–215

    Article  PubMed  Google Scholar 

  30. Nelson DA, Krupsky S, Pollack A, Aloni E, Belkin M, Vanzetta I, Rosner M, Grinvald A (2005) Special report: Noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 36:57–66

    PubMed  Google Scholar 

  31. Joos KM, Pillunat LE, Knighton RW, Anderson DR, Feuer WJ (1997) Reproducibility of laser Doppler flowmetry in the human optic nerve head. J Glaucoma 6:212–216

    CAS  PubMed  Google Scholar 

  32. Delori FC, Webb RH, Sliney DH (2007) Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am A Opt Image Sci Vis 24:1250–1265

    Article  PubMed  Google Scholar 

  33. Nicolela MT, Hnik P, Schulzer M, Drance SM (1997) Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry. J Glaucoma 6:157–164

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by an Unrestricted Research Fund to Jacobs Retina Center at Shiley Eye Center, University of California, San Diego (LC), NIH-EY 007366 (WRF), NIH EY 020617 (LC), NIH- EY 018589 (WRF), RPB Inc. New York (WRF), NIH-EY 016323 (DUB) and Retina Research Foundation of Wills Eye Institute (SJG).

Financial Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Freeman.

Additional information

The authors have full control of all primary data, and we agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhablani, J., Bartsch, DU., Cheng, L. et al. Segmental reproducibility of retinal blood flow velocity measurements using retinal function imager. Graefes Arch Clin Exp Ophthalmol 251, 2665–2670 (2013). https://doi.org/10.1007/s00417-013-2360-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2360-1

Keywords

Navigation