Skip to main content
Log in

Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The purpose of the experiment reported here was to assess the involvement of advanced glycation end products (AGEs), oxidative stress, and nuclear factor kappa-B (NF-κB) activation in the development of diabetic keratopathy.

Methods

Diabetes was induced by intraperitoneal streptozotocin injection in male Sprague–Dawley rats. The thickness of the cornea was measured. Apoptosis was detected by TUNEL assay and western blot for caspase-3. The expression of AGEs and 8-hydroxydeoxyguanosine (8-OHdG) were studied by immunohistochemistry in corneal tissues of normoglycaemic and diabetic rats. NF-κB activation was evaluated by electrophoretic mobility shift assay and southwestern histochemistry.

Results

Corneal edema was observed in diabetic rats. The thickness of cornea was higher in diabetic than in control rats. AGEs were accumulated in corneal tissues. 8-OHdG and NF-κB were identified in corneal epithelium, stroma and endothelium, and its expressions were greater in diabetic than in those of control rats. Diabetes induces significant alterations in rat corneal tissue structure.

Conclusions

The higher expression of AGE, 8-OHdG and NF-κB in corneal tissues of diabetic rats suggests that these factors are involved in apoptosis and in subsequent corneal alterations related to diabetic keratopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354

    Article  PubMed  CAS  Google Scholar 

  2. Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178

    Article  PubMed  CAS  Google Scholar 

  3. Azar DT, Spurr-Michaud SJ, Tisdale AS, Gipson IK (1992) Altered epithelial-basement membrane interactions in diabetic corneas. Arch Ophthalmol 110:537–540

    PubMed  CAS  Google Scholar 

  4. Friend J, Ishii Y, Thoft RA (1982) Corneal epithelial changes in diabetic rats. Ophthalmic Res 14:269–278

    Article  PubMed  CAS  Google Scholar 

  5. Taylor HR, Kimsey RA (1981) Corneal epithelial basement membrane changes in diabetes. Invest Ophthalmol Vis Sci 20:548–553

    PubMed  CAS  Google Scholar 

  6. Brightbill FS, Myers FL, Bresnick GH (1978) Postvitrectomy keratopathy. Am J Ophthalmol 85:651–655

    PubMed  CAS  Google Scholar 

  7. Foulks GN, Thoft RA, Perry HD, Tolentino FI (1979) Factors related to corneal epithelial complications after closed vitrectomy in diabetics. Arch Ophthalmol 97:1076–1078

    PubMed  CAS  Google Scholar 

  8. Goebbels M, Spitznas M (1991) Endothelial barrier function after phacoemulsification: a comparison between diabetic and non-diabetic patients. Graefes Arch Clin Exp Ophthalmol 229:254–257

    Article  PubMed  CAS  Google Scholar 

  9. Perry HD, Foulks GN, Thoft RA, Tolentino FI (1978) Corneal complications after closed vitrectomy through the pars plana. Arch Ophthalmol 96:1401–1403

    PubMed  CAS  Google Scholar 

  10. Kaji Y, Usui T, Oshika T, Matsubara M, Yamashita H, Araie M, Murata T, Ishibashi T, Nagai R, Horiuchi S, Amano S (2000) Advanced glycation end products in diabetic corneas. Invest Ophthalmol Vis Sci 41:362–368

    PubMed  CAS  Google Scholar 

  11. Yucel I, Yucel G, Akar Y, Demir N, Gurbuz N, Aslan M (2006) Transmission electron microscopy and autofluorescence findings in the cornea of diabetic rats treated with aminoguanidine. Can J Ophthalmol 41:60–66

    PubMed  Google Scholar 

  12. Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    Article  PubMed  CAS  Google Scholar 

  13. Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234

    Article  PubMed  CAS  Google Scholar 

  14. Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M (2002) Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51:2241–2248

    Article  PubMed  CAS  Google Scholar 

  15. Kaji Y, Amano S, Usui T, Oshika T, Yamashiro K, Ishida S, Suzuki K, Tanaka S, Adamis AP, Nagai R, Horiuchi S (2003) Expression and function of receptors for advanced glycation end products in bovine corneal endothelial cells. Invest Ophthalmol Vis Sci 44:521–528

    Article  PubMed  Google Scholar 

  16. Kasper M, Roehlecke C, Witt M, Fehrenbach H, Hofer A, Miyata T, Weigert C, Funk RH, Schleicher ED (2000) Induction of apoptosis by glyoxal in human embryonic lung epithelial cell line L132. Am J Respir Cell Mol Biol 23:485–491

    PubMed  CAS  Google Scholar 

  17. Yamagishi S, Inagaki Y, Amano S, Okamoto T, Takeuchi M, Makita Z (2002) Pigment epithelium-derived factor protects cultured retinal pericytes from advanced glycation end product-induced injury through its antioxidative properties. Biochem Biophys Res Commun 296:877–882

    Article  PubMed  CAS  Google Scholar 

  18. Sady C, Khosrof S, Nagaraj R (1995) Advanced Maillard reaction and crosslinking of corneal collagen in diabetes. Biochem Biophys Res Commun 214:793–797

    Article  PubMed  CAS  Google Scholar 

  19. Araki N, Ueno N, Chakrabarti B, Morino Y, Horiuchi S (1992) Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J Biol Chem 267:10211–10214

    PubMed  CAS  Google Scholar 

  20. Marion MS, Carlson EC (1994) Immunoelectron microscopic analyses of Maillard reaction products in bovine anterior lens capsule and Descemet’s membrane. Biochim Biophys Acta 1191:33–42

    Article  PubMed  CAS  Google Scholar 

  21. Gul M, Emre S, Esrefoglu M, Vard N (2008) Protective effects of melatonin and aminoguanidine on the cornea in streptozotocin-induced diabetic rats. Cornea 27:795–801

    Article  PubMed  Google Scholar 

  22. Sohn EJ, Kim CS, Kim YS, Jung DH, Jang DS, Lee YM, Kim JS (2007) Effects of magnolol (5, 5′-diallyl-2, 2′-dihydroxybiphenyl) on diabetic nephropathy in type 2 diabetic Goto–Kakizaki rats. Life Sci 80:468–475

    Article  PubMed  CAS  Google Scholar 

  23. Kim J, Kim CS, Sohn E, Kim H, Jeong IH, Kim JS (2010) Lens epithelial cell apoptosis initiates diabetic cataractogenesis in the Zucker diabetic fatty rat. Graefes Arch Clin Exp Ophthalmol 248:811–818

    Article  PubMed  Google Scholar 

  24. Sato E, Mori F, Igarashi S, Abiko T, Takeda M, Ishiko S, Yoshida A (2001) Corneal advanced glycation end products increase in patients with proliferative diabetic retinopathy. Diab Care 24:479–482

    Article  CAS  Google Scholar 

  25. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146

    Article  PubMed  CAS  Google Scholar 

  26. Vlassara H, Bucala R, Striker L (1994) Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest 70:138–151

    PubMed  CAS  Google Scholar 

  27. Alves M, Calegari VC, Cunha DA, Saad MJ, Velloso LA, Rocha EM (2005) Increased expression of advanced glycation end-products and their receptor, and activation of nuclear factor kappa-B in lacrimal glands of diabetic rats. Diabetologia 48:2675–2681

    Article  PubMed  CAS  Google Scholar 

  28. Roszkowska AM, Tringali CG, Colosi P, Squeri CA, Ferreri G (1999) Corneal endothelium evaluation in type I and type II diabetes mellitus. Ophthalmologica 213:258–261

    Article  PubMed  CAS  Google Scholar 

  29. Take G, Karabay G, Erdogan D, Duyar I (2006) The ultrastructural alterations in rat corneas with experimentally-induced diabetes mellitus. Saudi Med J 27:1650–1655

    PubMed  Google Scholar 

  30. Denis U, Lecomte M, Paget C, Ruggiero D, Wiernsperger N, Lagarde M (2002) Advanced glycation end-products induce apoptosis of bovine retinal pericytes in culture: involvement of diacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med 33:236–247

    Article  PubMed  CAS  Google Scholar 

  31. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM (1999) N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274:31740–31749

    Article  PubMed  CAS  Google Scholar 

  32. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    Article  PubMed  CAS  Google Scholar 

  33. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636

    Article  PubMed  CAS  Google Scholar 

  34. Klocek MS, Sassani JW, McLaughlin PJ, Zagon IS (2007) Topically applied naltrexone restores corneal reepithelialization in diabetic rats. J Ocul Pharmacol Ther 23:89–102

    Article  PubMed  CAS  Google Scholar 

  35. Kowluru RA (2005) Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci 76:1051–1060

    Article  PubMed  CAS  Google Scholar 

  36. Yanagiya N, Akiba J, Kado M, Yoshida A, Kono T, Iwamoto J (1997) Transient corneal edema induced by nitric oxide synthase inhibition. Nitric Oxide 1:397–403

    Article  PubMed  CAS  Google Scholar 

  37. Pepose JS, Ubels JL (1992) The cornea. In: Hart WM Jr (ed) Adler’s physiology of the eye. Mosby, St. Louis, pp 53–58

    Google Scholar 

  38. Waring GO 3rd, Bourne WM, Edelhauser HF, Kenyon KR (1982) The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 89:531–590

    PubMed  Google Scholar 

  39. Wigham CG, Guggenheim JA, Hodson SA (1994) Sodium movement into and out of corneal endothelium. Pflugers Arch 428:577–582

    Article  PubMed  CAS  Google Scholar 

  40. Agardh CD, Stenram U, Torffvit O, Agardh E (2002) Effects of inhibition of glycation and oxidative stress on the development of diabetic nephropathy in rats. J Diabetes Complications 16:395–400

    Article  PubMed  Google Scholar 

  41. Nicholls K, Mandel TE (1989) Advanced glycosylation end-products in experimental murine diabetic nephropathy: effect of islet isografting and of aminoguanidine. Lab Invest 60:486–491

    PubMed  CAS  Google Scholar 

  42. Osicka TM, Yu Y, Panagiotopoulos S, Clavant SP, Kiriazis Z, Pike RN, Pratt LM, Russo LM, Kemp BE, Comper WD, Jerums G (2000) Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes 49:87–93

    Article  PubMed  CAS  Google Scholar 

  43. Kern TS, Tang J, Mizutani M, Kowluru RA, Nagaraj RH, Romeo G, Podesta F, Lorenzi M (2000) Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci 41:3972–3978

    PubMed  CAS  Google Scholar 

  44. Peponis V, Papathanasiou M, Kapranou A, Magkou C, Tyligada A, Melidonis A, Drosos T, Sitaras NM (2002) Protective role of oral antioxidant supplementation in ocular surface of diabetic patients. Br J Ophthalmol 86:1369–1373

    Article  PubMed  CAS  Google Scholar 

  45. Kalfa TA, Gerritsen ME, Carlson EC, Binstock AJ, Tsilibary EC (1995) Altered proliferation of retinal microvascular cells on glycated matrix. Invest Ophthalmol Vis Sci 36:2358–2367

    PubMed  CAS  Google Scholar 

  46. Moore TC, Moore JE, Kaji Y, Frizzell N, Usui T, Poulaki V, Campbell IL, Stitt AW, Gardiner TA, Archer DB, Adamis AP (2003) The role of advanced glycation end products in retinal microvascular leukostasis. Invest Ophthalmol Vis Sci 44:4457–4464

    Article  PubMed  Google Scholar 

  47. Stitt AW, Moore JE, Sharkey JA, Murphy G, Simpson DA, Bucala R, Vlassara H, Archer DB (1998) Advanced glycation end products in vitreous: structural and functional implications for diabetic vitreopathy. Invest Ophthalmol Vis Sci 39:2517–2523

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant [L08010, K09030] from the Korea Institute of Oriental Medicine (KIOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Sook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Kim, CS., Sohn, E. et al. Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy. Graefes Arch Clin Exp Ophthalmol 249, 529–536 (2011). https://doi.org/10.1007/s00417-010-1573-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1573-9

Keywords

Navigation