Skip to main content

Advertisement

Log in

Bone spicule pigment formation in retinitis pigmentosa: insights from a mouse model

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

An Erratum to this article was published on 08 June 2010

Abstract

Background

Bone spicule pigments (BSP) are a hallmark of retinitis pigmentosa (RP). In this study, we examined the process of BSP formation in the rhodopsin knockout (rho -/-) mouse, a murine model for human RP.

Methods

In rho -/- mice from 2 to 16 months of age, representing the range from early to late stages of degeneration, retinal sections and whole mounts were examined morphologically by light and electron microscopy. The results were compared to scanning laser ophthalmoscopy of BSP degeneration in human RP.

Results

After the loss of all photoreceptor cells in rho-/- mice, the outer retina successively degenerated, leading to approximation and finally a direct contact of inner retinal vessels and the retinal pigment epithelium (RPE). We could show that it was the event of proximity of retinal vessel and RPE that triggered migration of RPE cells along the contacting vessels towards the inner retina. Ultrastructurally, these mislocalized RPE cells partially sealed the vessels by tight junction linkage and deposited extracellular matrix perivascularly. Also, the vascular endothelium developed fenestrations similar to the RPE-choroid interface. In whole mounts, the pigmented cell clusters outlining retinal capillaries correlated well with BSPs in human RP. The structure of the inner retina remained well preserved, even in late stages.

Conclusions

The Rho -/- mouse is the first animal model that depicts all major pathological changes, even in the late stages of RP. Using the rho -/- mouse model we were able to analyze the complete dynamic process of BSP formation. Therefore we conclude that: (1) In rho -/- retinas, BSPs only form in areas devoid of photoreceptors; (2) Direct contact between inner retinal vessels and RPE appears to be a major trigger for migration of RPE cells; (3) The distribution of the RPE cells in BSPs reflects the vascular network at the time of formation. The similarity of the disease process between mouse and human and the possibility to study all consecutive steps of the course of the disease makes the rho -/- mouse valuable for further insights in the dynamics of BSP formation in human RP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  CAS  PubMed  Google Scholar 

  2. Pagon RA (1988) Retinitis pigmentosa. Surv Ophthalmol 33:137–177

    Article  CAS  PubMed  Google Scholar 

  3. Milam AH, Li ZY, Fariss RN (1998) Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 17:175–205

    Article  CAS  PubMed  Google Scholar 

  4. Santos A, Humayun MS, de Juan E, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115:511–515

    CAS  PubMed  Google Scholar 

  5. Lahav M, Craft J, Albert DM, Ishii Y (1982) Advanced pigmentary retinal degeneration. An ultrastructural study. Retina 2:65–75

    Article  CAS  PubMed  Google Scholar 

  6. Milam AH, Kalina RE, Pagon RA (1983) Clinical-ultrastructural study of a retinal dystrophy. Invest Ophthalmol Vis Sci 24:458–469

    Google Scholar 

  7. Szamier RB, Berson EL (1977) Retinal ultrastructure in advanced retinitis pigmentosa. Invest Ophthalmol Vis Sci 16:947–962

    CAS  PubMed  Google Scholar 

  8. Milam AH, De Castro EB, Smith JE, Tang WX, John SJ, Gorin MB, Stone EM, Aguirre GD, Jacobson SG (2001) Concentric retinitis pigmentosa: clinicopathologic correlations. Exp Eye Res 73:493–508

    Article  CAS  PubMed  Google Scholar 

  9. Li ZY, Jacobson SG, Milam AH (1994) Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry. Exp Eye Res 58:397–408

    Article  CAS  PubMed  Google Scholar 

  10. Li ZY, Possin DE, Milam AH (1995) Histopathology of bone spicule pigmentation in retinitis pigmentosa. Ophthalmology 102:805–816

    CAS  PubMed  Google Scholar 

  11. To K, Adamian M, Dryja TP, Berson EL (2002) Histopathologic study of variation in severity of retinitis pigmentosa due to the dominant rhodopsin mutation Pro23His. Am J Ophthalmol 134:290–293

    Article  CAS  PubMed  Google Scholar 

  12. Flannery JG, Farber DB, Bird AC, Bok D (1989) Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 30:191–211

    CAS  PubMed  Google Scholar 

  13. Humphries MM, Rancourt D, Farrar GJ, Kenna P, Hazel M, Bush RA, Sieving PA, Sheils DM, McNally N, Creighton P, Erven A, Boros A, Gulya K, Capecchi MR, Humphries P (1997) Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet 15:216–219

    Article  CAS  PubMed  Google Scholar 

  14. Toda K, Bush RA, Humphries P, Sieving PA (1999) The electroretinogram of the rhodopsin knockout mouse. Vis Neurosci 16:391–398

    Article  CAS  PubMed  Google Scholar 

  15. Jaissle GB, May CA, Reinhard J, Kohler K, Fauser S, Lütjen-Drecoll E, Zrenner E, Seeliger MW (2001) Evaluation of the rhodopsin knockout mouse as a model of pure cone function. Invest Ophthalmol Vis Sci 42:506–513

    CAS  PubMed  Google Scholar 

  16. Humphries MM, Kiang S, McNally N, Donovan MA, Sieving PA, Bush RA, Machida S, Cotter T, Hobson A, Farrar J, Humphries P, Kenna P (2001) Comparative structural and functional analysis of photoreceptor neurons of Rho-/- mice reveal increased survival on C57BL/6J in comparison to 129 Sv genetic background. Vis Neurosci 18:437–443

    Article  CAS  PubMed  Google Scholar 

  17. Hobson AH, Donovan M, Humphries MM, Tuohy G, McNally N, Carmody R, Cotter T, Farrar GJ, Kenna PF, Humphries P (2000) Apoptotic photoreceptor death in the rhodopsin knockout mouse in the presence and absence of c-fos. Exp Eye Res 71:247–254

    Article  CAS  PubMed  Google Scholar 

  18. Campbell M, Humphries M, Kennan A, Kenna P, Humphries P, Brankin B (2006) Aberrant retinal tight junction and adherens junction protein expression in an animal model of autosomal dominant Retinitis pigmentosa: the Rho(-/-) mouse. Exp Eye Res 83:484–492

    Article  CAS  PubMed  Google Scholar 

  19. Nishikawa S, LaVail MM (1998) Neovascularization of the RPE: temporal differences in mice with rod photoreceptor gene defects. Exp Eye Res 67:509–515

    Article  CAS  PubMed  Google Scholar 

  20. Wolfrum U (1991) Centrin- and alpha-actinin-like immunoreactivity in the ciliary rootlets of insect sensilla. Cell Tissue Res 266:31–38

    Article  Google Scholar 

  21. Reiners J, Reidel B, El-Amraoui A, Boëda B, Huber I, Petit C, Wolfrum U (2003) Differential distribution of harmonin isoforms and their possible role in Usher 1 protein complexes in mammalian photoreceptor cells. Invest Ophthalmol Vis Sci 44:5006–5015

    Article  PubMed  Google Scholar 

  22. Penn JS, Li S, Naash MI (2000) Ambient hypoxia reverses retinal vascular attenuation in a transgenic mouse model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 41:4007–4013

    CAS  PubMed  Google Scholar 

  23. Blaauwgeers HG, Holtkamp GM, Rutten H, Witmer AN, Koolwijk P, Partanen TA, Alitalo K, Kroon ME, Kijlstra A, van Hinsbergh VW, Schlingemann RO (1999) Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 155:421–428

    CAS  PubMed  Google Scholar 

  24. Roque RS, Caldwell RB (1991) Pigment epithelial cell changes precede vascular transformations in the dystrophic rat retina. Exp Eye Res 53:787–798

    Article  CAS  PubMed  Google Scholar 

  25. Ida H, Tobe T, Nambu H, Matsumura M, Uyama M, Campochiaro PA (2003) RPE cells modulate subretinal neovascularization, but do not cause regression in mice with sustained expression of VEGF. Invest Ophthalmol Vis Sci 44:5430–5437

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Dominik Fischer for the SLO investigation.

Financial interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesine B. Jaissle.

Additional information

Supported by DFG grants Se837/1–1, 1–2, 4–1,6–1, Wo 548/6–2, and BMBF grant 0314106.

The authors have full control of all primary data and they agree to allow Graefe′s Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Gesine B. Jaissle and Christian Albrecht May contributed equally to this work

An erratum to this article can be found at http://dx.doi.org/10.1007/s00417-010-1357-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaissle, G.B., May, C.A., van de Pavert, S.A. et al. Bone spicule pigment formation in retinitis pigmentosa: insights from a mouse model. Graefes Arch Clin Exp Ophthalmol 248, 1063–1070 (2010). https://doi.org/10.1007/s00417-009-1253-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1253-9

Keywords

Navigation