Skip to main content

Advertisement

Log in

Expression of hypoxia-inducible factor−1α and −2α in human choroidal neovascular membranes

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Up-regulation of pro-angiogenic cytokine expression occurring secondary to hypoxia in physiologic and pathophysiologic conditions is mediated by the family of transcription regulators know as hypoxia inducible factors (HIF). The present study was undertaken to investigate the expression of HIF occurring in human choroidal neovascularization (CNV) and the posterior segment of young and old eyes.

Methods

Surgically excised CNV from patients with either age-related macular degeneration (AMD; n = 9), punctuate inner choroidopathy (PIC; n = 3) and young normal eyes were immunohistochemically probed with monoclonal antibodies against HIF−1α and −2α and compared to that for cell markers specific for vascular endothelial cells (CD34), macrophages (CD68), retinal pigment epithelial cells (RPE; panel cytokeratins/CK18) and VEGF. Following secondary antibody amplification, reactions were visualized with fast red chromogen.

Results

Cellular immunoreactivity of membranes for HIF−2α was strong in eight out of nine AMD specimens but it was only weakly positive for HIF−1α in five specimens. In contrast, two out of three PIC specimens were weakly positive for HIF−1α but demonstrated no staining for HIF−2α. Immunohistochemical analysis revealed areas within the CNV membranes that were predominantly immunopositive for CD68 and cytokeratin indicating the presence of RPE and/or macrophages and that these cells strongly co-localized with the presence of HIF and VEGF. No immunochemical co-localization was observed with HIF and the endothelial cell marker CD34 in any membranes studied. Normal globes also demonstrated HIF−2 positivity to be predominantly localized to the central RPE rather than peripheral RPE irrespective of age of donor.

Conclusions

The localization of HIF expression supports the concept that hypoxia is a major stimulus for the development of submacular wound healing and within this context CNV is but one component of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albina JE, Mastrofrancesco B, Vessella JA, Louis CA, Henry WL Jr, Reichner JS (2001) HIF−1 expression in healing wounds: HIF−1alpha induction in primary inflammatory cells by TNF-alpha. Am J Physiol Cell Physiol 281:C1971–C1977

    PubMed  CAS  Google Scholar 

  2. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF−1 induction of SDF-1. Nat Med 10:858–864. doi:10.1038/nm1075

    Article  PubMed  CAS  Google Scholar 

  3. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF−1 induction of SDF−1. Nat Med 10:858–864. doi:10.1038/nm1075

    Article  PubMed  CAS  Google Scholar 

  4. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF−1 induction of SDF−1. Nat Med 10:858–864. doi:10.1038/nm1075

    Article  PubMed  CAS  Google Scholar 

  5. Clark RA (1988) Overview and general considerations of wound repair. In: Clark RAF, Henson PM (eds) The molecular and cellular biology of wound repair. Plenum Press, New York, pp 3–33

    Google Scholar 

  6. Ding K, Scortegagna M, Seaman R, Birch DG, Garcia JA (2005) Retinal disease in mice lacking hypoxia-inducible transcription factor−2alpha. Invest Ophthalmol Vis Sci 46:1010–1016. doi:10.1167/iovs.04-0788

    Article  PubMed  Google Scholar 

  7. Elson DA, Ryan HE, Snow JW, Johnson R, Arbeit JM (2000) Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF−1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res 60:6189–6195

    PubMed  CAS  Google Scholar 

  8. Forooghian F, Das B (2007) Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor−1alpha. Am J Ophthalmol 144:761–768. doi:10.1016/j.ajo.2007.07.022

    Article  PubMed  CAS  Google Scholar 

  9. Forooghian F, Razavi R, Timms L (2007) Hypoxia-inducible factor expression in human RPE cells. Br J Ophthalmol 91:1406–1410. doi:10.1136/bjo.2007.123125

    Article  PubMed  Google Scholar 

  10. Fraunfelder FW (2005) Pegaptanib for wet macular degeneration. Drugs Today (Barc) 41:703–709. doi:10.1358/dot.2005.41.11.917340

    Article  CAS  Google Scholar 

  11. Garcia JA (2006) HIFing the brakes: therapeutic opportunities for treatment of human malignancies. Sci STKE 2006:e25. doi:10.1126/stke.3372006pe25

    Article  Google Scholar 

  12. Grossniklaus HE, Ling JX, Wallace TM, Dithmar S, Lawson DH, Cohen C, Elner VM, Elner SG, Sternberg P Jr (2002) Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 8:119–126

    PubMed  CAS  Google Scholar 

  13. Grossniklaus HE, Ling JX, Wallace TM, Dithmar S, Lawson DH, Cohen C, Elner VM, Elner SG, Sternberg P Jr (2002) Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 8:119–126

    PubMed  CAS  Google Scholar 

  14. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7:205–213

    PubMed  CAS  Google Scholar 

  15. Hiscott P, Sheridan C, Magee RM, Grierson I (1999) Matrix and the retinal pigment epithelium in proliferative retinal disease. Prog Retin Eye Res 18:167–190. doi:10.1016/S1350-9462(98)00024-X

    Article  PubMed  CAS  Google Scholar 

  16. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF−1alpha) and HIF−2alpha in hypoxic gene regulation. Mol Cell Biol 23:9361–9374. doi:10.1128/MCB.23.24.9361-9374.2003

    Article  PubMed  CAS  Google Scholar 

  17. Kent D, Sheridan C (2003) Choroidal neovascularization: a wound healing perspective. Mol Vis 9:747–755

    PubMed  CAS  Google Scholar 

  18. Kourlas H, Schiller DS (2006) Pegaptanib sodium for the treatment of neovascular age-related macular degeneration: a review. Clin Ther 28:36–44. doi:10.1016/j.clinthera.2006.01.009

    Article  PubMed  CAS  Google Scholar 

  19. Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, Bicknell R, Taylor M, Gatter KC, Harris AL (2002) Relation of hypoxia-inducible factor−2 alpha (HIF−2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res 62:1326–1329

    PubMed  CAS  Google Scholar 

  20. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M (1996) VEGF, flk−1, and flt−1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270:H1803–H1811

    PubMed  CAS  Google Scholar 

  21. Otani A, Takagi H, Oh H, Koyama S, Ogura Y, Matumura M, Honda Y (2002) Vascular endothelial growth factor family and receptor expression in human choroidal neovascular membranes. Microvasc Res 64:162–169. doi:10.1006/mvre.2002.2407

    Article  PubMed  CAS  Google Scholar 

  22. Park SK, Dadak AM, Haase VH, Fontana L, Giaccia AJ, Johnson RS (2003) Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (HIF−1alpha): role of cytoplasmic trapping of HIF−2alpha. Mol Cell Biol 23:4959–4971. doi:10.1128/MCB.23.14.4959-4971.2003

    Article  PubMed  CAS  Google Scholar 

  23. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443. doi:10.1038/nature04871

    Article  PubMed  CAS  Google Scholar 

  24. Ratcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW (1998) Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 201:1153–1162

    PubMed  CAS  Google Scholar 

  25. Ratcliffe PJ, Pugh CW, Maxwell PH (2000) Targeting tumors through the HIF system. Nat Med 6:1315–1316. doi:10.1038/82113

    Article  PubMed  CAS  Google Scholar 

  26. Richards FM (2001) Molecular pathology of von HippelLindau disease and the VHL tumour suppressor gene. Expert Rev Mol Med 2001:1–27

    PubMed  Google Scholar 

  27. Rivard A, Berthou-Soulie L, Principe N, Kearney M, Curry C, Branellec D, Semenza GL, Isner JM (2000) Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J Biol Chem 275:29643–29647. doi:10.1074/jbc.M001029200

    Article  PubMed  CAS  Google Scholar 

  28. Rosenberger C, Rosen S, Heyman SN (2005) Current understanding of HIF in renal disease. Kidney Blood Press Res 28:325–340. doi:10.1159/000090187

    Article  PubMed  Google Scholar 

  29. Scheid A, Wenger RH, Christina H, Camenisch I, Ferenc A, Stauffer UG, Gassmann M, Meuli M (2000) Hypoxia-regulated gene expression in fetal wound regeneration and adult wound repair. Pediatr Surg Int 16:232–236. doi:10.1007/s003830050735

    Article  PubMed  CAS  Google Scholar 

  30. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67. doi:10.1016/S1471-4914(02)02317-1

    Article  PubMed  CAS  Google Scholar 

  31. Semenza GL (2004) Hydroxylation of HIF−1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182. doi:10.1152/physiol.00001.2004

    CAS  Google Scholar 

  32. Semenza GL, Shimoda LA, Prabhakar NR (2006) Regulation of gene expression by HIF−1. Novartis Found Symp 272:2–8. doi:10.1002/9780470035009.ch2

    Article  PubMed  CAS  Google Scholar 

  33. Sheridan CM, Rice D, Hiscott PS, Wong D, Kent DL (2006) The presence of AC133-positive cells suggests a possible role of endothelial progenitor cells in the formation of choroidal neovascularization. Invest Ophthalmol Vis Sci 47:1642–1645. doi:10.1167/iovs.05-0779

    Article  PubMed  Google Scholar 

  34. Shimada H, Kawamura A, Mori R, Yuzawa M (2007) Clinicopathological findings of retinal angiomatous proliferation. Graefes Arch Clin Exp Ophthalmol 245:295–300. doi:10.1007/s00417-006-0367-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dunhill Medical Trust, Foundation for the Prevention of Blindness and Fight For Sight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl M. Sheridan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheridan, C.M., Pate, S., Hiscott, P. et al. Expression of hypoxia-inducible factor−1α and −2α in human choroidal neovascular membranes. Graefes Arch Clin Exp Ophthalmol 247, 1361–1367 (2009). https://doi.org/10.1007/s00417-009-1133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1133-3

Keywords

Navigation