Skip to main content

Advertisement

Log in

Senescence of human multifocal electroretinogram components: a localized approach

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Previous studies have shown significant age-related changes in the first-order kernel of multifocal ERG (mfERG) responses. All of these reports were based upon ring averages across the retinal field. This study was carried out to determine age-related changes in the localized response and localized variability in the mfERG parameters: N1P1 amplitude, scalar product and implicit time of P1.

Methods

MfERG recordings from 70 normal phakic subjects (ages 9–80 years) were analyzed with VERIS 4.8. Scalar product values (for each hexagon based on ring average templates) were obtained and analyzed for age-related changes. Statistical measures such as coefficient of variation (CV) and parameters of a linear regression model were applied. Point-by-point comparisons were made across hemifields.

Results

Each localized response showed a significant aging effect either in scalar product or in N1P1 amplitude. The average decline of the response was ~5% per decade, varying from 3.3% (peripherally) to 7.5% (perifoveally). The decline was significantly higher for the superior than for the inferior retina for amplitude parameters, corresponding to larger increases in P1 implicit time. The relative rate of change with age was similar for the nasal and the temporal retina. The average CV for all subjects at all locations was 29.4% (±4.1%).

Conclusions

The localized approach revealed patterns of age-related change that were not apparent in the ring averages. Information about changes in discrete retinal areas with age should make the mfERG more useful in quantitatively monitoring progression of retinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson RS, McDowell DR (1997) Peripheral resolution using stationary and flickering gratings: the effects of age. Curr Eye Res 16:1209–1214

    Article  CAS  PubMed  Google Scholar 

  2. Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110:1571–1576

    CAS  PubMed  Google Scholar 

  3. Birch DG, Hood DC, Locke KG, Hoffman DR, Tzekov RT (2002) Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors: normal aging, progression with disease, and test-retest variability. Arch Ophthalmol 120:1045–1051

    PubMed  Google Scholar 

  4. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, de Jong PT, Klaver CC, Klein BE, Klein R, et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 39:367–374

    CAS  PubMed  Google Scholar 

  5. Buck SL (2004) Rod-cone interactions in human vision. In: Chalupa, L. M., Werner, J. S. (eds) The visual neurosciences MIT Press Cambridge, MA 863–878

  6. Chung HS, Harris A, Halter PJ, Kagemann L, Roff EJ, Garzozi HJ, Hosking SL, Martin BJ (1999) Regional differences in retinal vascular reactivity. Invest Ophthalmol Vis Sci 40:2448–2453

    CAS  PubMed  Google Scholar 

  7. Cogan DG (1963) Development and senescence of the human retinal vasculature. Trans Ophthalmol Soc UK 83:465

    CAS  PubMed  Google Scholar 

  8. Cooper RL, Eikelboom RH, Barry CJ (1992) Correlations between densitometry of red-free photographs and reflectometry with the scanning laser ophthalmoscope in normal subjects and glaucoma patients. Int Ophthalmol 16:243–246

    CAS  PubMed  Google Scholar 

  9. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5-25

    CAS  PubMed  Google Scholar 

  10. Curcio CA, Drucker DN (1993) Retinal ganglion cells in Alzheimer’s disease and aging. Ann Neurol 33:248–257

    Google Scholar 

  11. Curcio CA, Sloan KR, Jr., Packer O, Hendrickson AE, Kalina RE (1987) Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236:579–582

    CAS  PubMed  Google Scholar 

  12. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    CAS  PubMed  Google Scholar 

  13. Curcio CA, Millican CL, Allen KA, Kalina RE (1993) Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34:3278–3296

    CAS  PubMed  Google Scholar 

  14. Dallinger S, Findl O, Strenn K, Eichler HG, Wolzt M, Schmetterer L (1998) Age dependence of choroidal blood flow. J Am Geriatr Soc 46:484–487

    CAS  PubMed  Google Scholar 

  15. Delori FC, Goger DG, Dorey CK (2001) Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 42:1855–1866

    CAS  PubMed  Google Scholar 

  16. Fitzgerald ME, Tolley E, Frase S, Zagvazdin Y, Miller RF, Hodos W, Reiner A (2001) Functional and morphological assessment of age-related changes in the choroid and outer retina in pigeons. Vis Neurosci 18:299–317

    Article  CAS  PubMed  Google Scholar 

  17. Fortune B, Johnson CA (2002) Decline of photopic multifocal electroretinogram responses with age is due primarily to preretinal optical factors. J Opt Soc Am A Opt Image Sci Vis 19:173–184

    PubMed  Google Scholar 

  18. Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815

    Article  CAS  PubMed  Google Scholar 

  19. Gerth C, Garcia SM, Ma L, Keltner JL, Werner JS (2002) Multifocal electroretinogram: age-related changes for different luminance levels. Graefe’s Arch Clin Exp Ophthalmol 240:202–208

    Google Scholar 

  20. Gerth C, Hauser D, Delahunt PB, Morse LS, Werner JS (2003) Assessment of multifocal electroretinogram abnormalities and their relation to morphologic characteristics in patients with large drusen. Arch Ophthalmol 121:1404–1414

    Article  PubMed  Google Scholar 

  21. Gerth C, Sutter EE, Werner JS (2003) MfERG response dynamics of the aging retina. Invest Ophthalmol Vis Sci 44:4443–4450

    Article  PubMed  Google Scholar 

  22. Groh MJ, Michelson G, Langhans MJ, Harazny J (1996) Influence of age on retinal and optic nerve head blood circulation. Ophthalmology 103:529–534

    CAS  PubMed  Google Scholar 

  23. Harman A, Abrahams B, Moore S, Hoskins R (2000) Neuronal density in the human retinal ganglion cell layer from 16–77 years. Anat Rec 260:124–131

    Article  CAS  PubMed  Google Scholar 

  24. Healey PR, Mitchell P, Smith W, Wang JJ (1997) The influence of age and intraocular pressure on the optic cup in a normal population. J Glaucoma 6:274–278

    CAS  PubMed  Google Scholar 

  25. Hood DC (2000) Assessing retinal function with the multifocal technique. Prog Retin Eye Res 19:607–646

    Article  CAS  PubMed  Google Scholar 

  26. Ito YN, Mori K, Young-Duvall J, Yoneya S (2001) Aging changes of the choroidal dye filling pattern in indocyanine green angiography of normal subjects. Retina 21:237–242

    CAS  PubMed  Google Scholar 

  27. Jackson GR, Ortega J, Girkin C, Rosenstiel CE, Owsley C (2002) Aging-related changes in the multifocal electroretinogram. J Opt Soc Am A Opt Image Sci Vis 19:185–189

    PubMed  Google Scholar 

  28. Jonas JB, Schmidt AM, Muller-Bergh JA, Schlotzer-Schrehardt UM, Naumann GO (1992) Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 33:2012–2018

    CAS  PubMed  Google Scholar 

  29. Jonas JB, Schneider U, Naumann GO (1992) Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol 230:505–510

    CAS  PubMed  Google Scholar 

  30. Kanai K, Abe T, Murayama K, Yoneya S (2002) [Retinal thickness and changes with age]. Nippon Ganka Gakkai Zasshi 106:162–165

    PubMed  Google Scholar 

  31. Laatikainen L, Larinkari J (1977) Capillary-free area of the fovea with advancing age. Invest Ophthalmol Vis Sci 16:1154–1157

    PubMed  Google Scholar 

  32. Lam AK, Chan ST, Chan H, Chan B (2003) The effect of age on ocular blood supply determined by pulsatile ocular blood flow and color Doppler ultrasonography. Optom Vis Sci 80:305–311

    Article  PubMed  Google Scholar 

  33. Lovasik JV, Kergoat MJ, Justino L, Kergoat H (2003) Neuroretinal basis of visual impairment in the very elderly. Graefes Arch Clin Exp Ophthalmol 241:48–55

    PubMed  Google Scholar 

  34. Marmor MF (2002) “Do you, doctor, take the mfERG for better or for worse?” Graefes Arch Clin Exp Ophthalmol 240:241–243

    Google Scholar 

  35. Marmor MF, Hood DC, Keating D, Kondo M, Seeliger MW, Miyake Y (2003) Guidelines for basic multifocal electroretinography (mfERG). Doc Ophthalmol 106:105–115

    Article  PubMed  Google Scholar 

  36. Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH (2001) Delayed dark-adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690

    Google Scholar 

  37. Mohidin N, Yap MK, Jacobs RJ (1999) Influence of age on the multifocal electroretinography. Ophthalmic Physiol Opt 19:481–488

    CAS  PubMed  Google Scholar 

  38. Nabeshima T, Tazawa Y, Mita M, Sano M (2002) Effects of aging on the first and second-order kernels of multifocal electroretinogram. Jpn J Ophthalmol 46:261–269

    Article  PubMed  Google Scholar 

  39. Nagatomo A, Nao-i N, Maruiwa F, Arai M, Sawada A (1998) Multifocal electroretinograms in normal subjects. Jpn J Ophthalmol 42:129–135

    CAS  PubMed  Google Scholar 

  40. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M (1995) Retinal photoreceptor density decreases with age. Ophthalmology 102:1853–1859

    CAS  PubMed  Google Scholar 

  41. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M (1996) Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol 121:181–189

    CAS  PubMed  Google Scholar 

  42. Parks S, Keating D, Williamson TH, Evans AL, Elliott AT, Jay JL (1996) Functional imaging of the retina using the multifocal electroretinograph: a control study. Br J Ophthalmol 80:831–834

    CAS  PubMed  Google Scholar 

  43. Penrose PJ, Tzekov RT, Sutter EE, Fu AD, Allen AW, Jr., Fung WE, Oxford KW (2003) Multifocal electroretinography evaluation for early detection of retinal dysfunction in patients taking hydroxychloroquine. Retina 23:503–512

    Article  PubMed  Google Scholar 

  44. Pierscionek BK, Weale RA (1996) Risk factors and ocular senescence. Gerontology 42:257–269

    CAS  PubMed  Google Scholar 

  45. Quigley HA, Brown AE, Morrison JD, Drance SM (1990) The size and shape of the optic disc in normal human eyes. Arch Ophthalmol 108:51–57

    CAS  PubMed  Google Scholar 

  46. Rojanapongpun P, Drance SM (1993) Velocity of ophthalmic arterial flow recorded by Doppler ultrasound in normal subjects. Am J Ophthalmol 115:174–180

    CAS  PubMed  Google Scholar 

  47. Seeliger MW, Kretschmann UH, Apfelstedt-Sylla E, Zrenner E (1998) Implicit time topography of multifocal electroretinograms. Invest Ophthalmol Vis Sci 39:718–723

    CAS  PubMed  Google Scholar 

  48. Seiple W, Vajaranant TS, Szlyk JP, Clemens C, Holopigian K, Paliga J, Badawi D, Carr RE (2003) Multifocal electroretinography as a function of age: the importance of normative values for older adults. Invest Ophthalmol Vis Sci 44:1783–1792

    Article  PubMed  Google Scholar 

  49. Sing NM, Anderson SF, Townsend JC (2000) The normal optic nerve head. Optom Vis Sci 77:293–301

    Article  CAS  PubMed  Google Scholar 

  50. Sjostrand FS (2002) Sequential pictorial presentation of neural interaction in the retina. 2. The depolarizing and hyperpolarizing bipolar cells at rod terminals. J Submicrosc Cytol Pathol 34:85–98

    CAS  PubMed  Google Scholar 

  51. Sjostrand FS (2003) Color vision at low light intensity, dark adaptation, Purkinje shift, critical flicker frequency and the deterioration of vision at low illumination. Neurophysiology at the nanometer range of neural structure. J Submicrosc Cytol Pathol 35:117–127

    CAS  PubMed  Google Scholar 

  52. Sugi K (1966) Studies on the pathological changes in the retinal vessels of human eyes, using the trypsin digestion method. Jpn J Ophthalmol 10:252

    Google Scholar 

  53. Sutter EE (1991) The fast m-transform: a fast computation of cross-correlations with binary m-sequences. SIAM J Comput 20:686–694

    Google Scholar 

  54. Sutter EE, Tran D (1992) The field topography of ERG components in man--I. The photopic luminance response. Vision Res 32:433–446

    CAS  PubMed  Google Scholar 

  55. Suzuki S, Horiguchi M, Tanikawa A, Miyake Y, Kondo M (1998) Effect of age on short-wavelength sensitive cone electroretinogram and long- and middle-wavelength sensitive cone electroretinogram. Jpn J Ophthalmol 42:424–430

    Article  CAS  PubMed  Google Scholar 

  56. Watzke RC, Soldevilla JD, Trune DR (1993) Morphometric analysis of human retinal pigment epithelium: correlation with age and location. Curr Eye Res 12:133–142

    CAS  PubMed  Google Scholar 

  57. Weleber RG (1981) The effect of age on human cone and rod ganzfeld electroretinograms. Invest Ophthalmol Vis Sci 20:392–399

    CAS  PubMed  Google Scholar 

  58. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    CAS  PubMed  Google Scholar 

  59. Wikler KC, Williams RW, Rakic P (1990) Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina. J Comp Neurol 297:499–508

    CAS  PubMed  Google Scholar 

  60. Williams TD, Wilkinson JM (1992) Position of the fovea centralis with respect to the optic nerve head. Optom Vis Sci 69:369–377

    CAS  PubMed  Google Scholar 

  61. Yoshii M, Paarmann A (1989) Hemiretinal stimuli elicit different amplitudes in the pattern electroretinogram. Doc Ophthalmol 72:21–30

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We appreciate the technical assistance of Susan Garcia, Lei Ma and Lawrence Morse. This work was funded by the National Institute on Aging (AG04058) and a Jules and Doris Stein Research to Prevent Blindness Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Werner.

Additional information

Commercial interest: none

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzekov, R.T., Gerth, C. & Werner, J.S. Senescence of human multifocal electroretinogram components: a localized approach. Graefe's Arch Clin Exp Ophthalmol 242, 549–560 (2004). https://doi.org/10.1007/s00417-004-0892-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-0892-0

Keywords

Navigation