Skip to main content

Advertisement

Log in

Up-regulation of semaphorin expression in retina of glaucomatous rabbits

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Glaucoma is a term encompassing a variety of diseases that end in the death of retinal ganglion cells (RGC). Although a variety of factors can initiate the disease onset, increased intraocular pressure (IOP) is one of the major risk factors. In our previous study we found that semaphorins were causally involved in RGC death following axotomy. Since a common feature of all retinal neuropathies is axonal damage, we hypothesized that semaphorins are involved in glaucoma-induced RGC death. The purpose of this study was to analyze the effect of increased IOP on RGC viability and to analyze semaphorin expression pattern in glaucomatous retinas.

Methods

Utilizing retrograde-labeled dye (4-Di-10-Asp) and hematoxylin-eosin staining, we investigated the effect of elevated levels of IOP on RGC viability. In addition, immunohistochemical analysis and western blotting were used to study the pattern of semaphorin expression in retinas of rabbits with genetically developed increased IOP and subsequently glaucoma.

Results

Using specific anti-semaphorin antibodies, the expression of a single protein with the size of a semaphorin protein, 110 kDa, was detected; its expression was up-regulated in glaucomatous rabbits compared with controls. Time-course analysis revealed that semaphorin expression peaked between 2 and 6 months of age and declined thereafter. Immunohistochemical analysis revealed that semaphorin expression was up-regulated specifically in the ganglion cell layer, which is a structure that is highly affected in glaucoma.

Conclusion

Deciphering the molecular mechanisms of glaucoma-induced death and its mediators is a crucial step towards designing new therapeutic strategies to treat this incurable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Anderson DR (1989) Glaucoma: the damage caused by pressure. XLVI Edward Jackson memorial lecture. Am J Ophthalmol 108:485–495

    CAS  PubMed  Google Scholar 

  2. Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol 13:771–783

    CAS  PubMed  Google Scholar 

  3. Armaly MF, Krueger DE, Maunder L, Becker B, Hetherington J Jr, Kolker AE, Levene RZ, Maumenee AE, Pollack IP, Shaffer RN (1980) Biostatistical analysis of the collaborative glaucoma study. I. Summary report of the risk factors for glaucomatous visual-field defects. Arch Ophthalmol 98:2163–2171

    CAS  PubMed  Google Scholar 

  4. Cohen-Michaeli A, Jacot JL, Rosner M, Solomon AS (1996) Corneal findings in rabbits with inherited glaucoma. Invest Ophthalmol Vis Sci 37(Suppl):189

    Google Scholar 

  5. David R, Livingston DG, Luntz MH (1977) Ocular hypertension—a long-term follow-up of treated and untreated patients. Br J Ophthalmol 61:668–674

    CAS  PubMed  Google Scholar 

  6. De Winter F, Oudega M, Lankhorst AJ, Hamers FP, Blits B, Ruitenberg MJ, Pasterkamp RJ, Gispen WH, Verhaagen J (2002) Injury-induced class 3 semaphorin expression in the rat spinal cord. Exp Neurol 175:61–75

    Article  PubMed  Google Scholar 

  7. Gaasterland D, Tanishima T, Kuwabara T (1978) Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nerve head during development of glaucomatous cupping. Invest Ophthalmol Vis Sci 17:838–846

    CAS  PubMed  Google Scholar 

  8. Geyer O, Wollman Y, Chernihovsky T, Laina A, Lazar M, Solomon AS (1999) Elevated nitric oxide (NO) levels in buphthalmic rabbits. invest. Opthalmol. Vis. Sci. 37:834

    Google Scholar 

  9. Glovinsky Y, Quigley HA, Dunkelberger GR (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 32:484–491

    CAS  PubMed  Google Scholar 

  10. Goodman CS (1994) The likeness of being: phylogenetically conserved molecular mechanisms of growth cone guidance. Cell 78:353–356

    CAS  PubMed  Google Scholar 

  11. Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19:341–377

    Article  CAS  PubMed  Google Scholar 

  12. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376:509–514

    CAS  PubMed  Google Scholar 

  13. Griffin JW, Watson DF (1988) Axonal transport in neurological disease. Ann Neurol 23:3–13

    CAS  PubMed  Google Scholar 

  14. Gu Y, Ihara Y (2000) Evidence that collapsin response mediator protein-2 is involved in the dynamics of microtubules. J Biol Chem 275:17917–17920

    Article  CAS  PubMed  Google Scholar 

  15. Gu Y, Hamajima N, Ihara Y (2000) Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry 39:4267–4275

    Google Scholar 

  16. Hanna BL, Sawin PB, Sheppard LB (1962) Recessive buphthalmos in rabbits. Genetics 47:219–521

    Google Scholar 

  17. Harlow EL (1988) A laboratory manual. Cold Spring Harbor Laboratory Press

  18. Hirsch E, Hu LJ, Prigent A, Constantin B, Agid Y, Drabkin H, Roche J (1999) Distribution of semaphorin IV in adult human brain. Brain Res 823:67–79

    Article  CAS  PubMed  Google Scholar 

  19. Kolodkin AL (1996) Growth cones and the cues that repel them. Trends Neurosci 19:507–513

    Article  CAS  PubMed  Google Scholar 

  20. Lazarov-Spiegler O, Solomon AS, Schwartz M (1999) Link between optic nerve regrowth failure and macrophage stimulation in mammals. Vision Res 39:169–175

    Google Scholar 

  21. Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, Fountoulakis M (1999) Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer's disease brain is downregulated at the mRNA and dysregulated at the protein level. J Neural Transm Suppl 57:161–177

    CAS  PubMed  Google Scholar 

  22. Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75:217–227

    CAS  PubMed  Google Scholar 

  23. Luo Y, Shepherd I, Li J, Renzi MJ, Chang S, Raper JA (1995) A family of molecules related to collapsin in the embryonic chick nervous system. Neuron 14:1131–1140

    CAS  PubMed  Google Scholar 

  24. Messersmith EK, Leonardo ED, Shatz CJ, Tessier-Lavigne M, Goodman CS, Kolodkin AL (1995) Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14:949–959

    CAS  PubMed  Google Scholar 

  25. Morrison JC, Nylander KB, Lauer AK, Cepurna WO, Johnson E (1998) Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma. Invest Ophthalmol Vis Sci 39:526–531

    Google Scholar 

  26. Nakazawa T, Tomita H, Yamaguchi K, Sato Y, Shimura M, Kuwahara S, Tamai M (2002) Neuroprotective effect of nipradilol on axotomized rat retinal ganglion cells. Curr Eye Res 24:114–122

    Article  PubMed  Google Scholar 

  27. Pasterkamp RJ, Anderson PN, Verhaagen J (2001) Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A. Eur J Neurosci 13:457–471

    Article  CAS  PubMed  Google Scholar 

  28. Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 41:764–774

    CAS  PubMed  Google Scholar 

  29. Percicot CL, Schnell CR, Debon C, Hariton C (1996) Continuous intraocular pressure measurement by telemetry in alpha-chymotrypsin-induced glaucoma model in the rabbit: effects of timolol, dorzolamide, and epinephrine. J Pharmacol Toxicol Methods 36:223–228

    Article  CAS  PubMed  Google Scholar 

  30. Quigley HA (1999) Neuronal death in glaucoma. Prog Ret Eye Res 18:39–57

    Article  CAS  Google Scholar 

  31. Quigley HA, Hohman RM (1983) Laser energy levels for trabecular meshwork damage in the primate eye. Invest Ophthalmol Vis Sci 24:1305–1307

    CAS  PubMed  Google Scholar 

  32. Quigley HA, Davis EB, Anderson DR (1977) Descending optic nerve degeneration in primates. Invest Ophthalmol Vis Sci 16:841–849

    CAS  PubMed  Google Scholar 

  33. Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774–786

    CAS  PubMed  Google Scholar 

  34. Shirvan A, Ziv I, Fleminger G, Shina R, He Z, Brudo I, Melamed E, Barzilai A (1999) Semaphorins as mediators of neuronal apoptosis. J Neurochem 73:961–971

    Article  CAS  PubMed  Google Scholar 

  35. Shirvan A, Kimron M, Holdengreber V, Ziv I, Ben-Shaul Y, Melamed S, Melamed E, Barzilai A, Solomon AS (2002) Anti-semaphorin 3A antibodies rescue retinal ganglion cells from cell death following optic nerve axotomy. J Biol Chem 277:49799–49807

    Article  CAS  PubMed  Google Scholar 

  36. Solomon AS (1995) Congenital glaucoma in rabbits. Invest Ophthalmol Vis Sci 36:986u

    Google Scholar 

  37. Sommer A (1989) Intraocular pressure and glaucoma. Am J Ophthalmol 107:186–188

    CAS  PubMed  Google Scholar 

  38. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    CAS  PubMed  Google Scholar 

  39. Ueda J, Sawaguchi S, Hanyu T, Yaoeda K, Fukuchi T, Abe H, Ozawa H (1998) Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol 42:337–344

    Google Scholar 

  40. Ueno A, Tawara A, Kubota T, Ohnishi Y, Inomata H, Solomon AS (1999) Histopathological changes in iridocorneal angle of inherited glaucoma in rabbits. Graefes Arch Clin Exp Ophthalmol 237:654–660

    Article  CAS  PubMed  Google Scholar 

  41. Yoshida H, Watanabe A, Ihara Y (1998) Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer's disease. J Biol Chem 273:9761–9768

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Israeli Ministry of Health (to A.B.) and the Stein Research Fund (to A.S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Barzilai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomon, A.S., Kimron, M., Holdengreber, V. et al. Up-regulation of semaphorin expression in retina of glaucomatous rabbits. Graefe's Arch Clin Exp Ophthalmol 241, 673–681 (2003). https://doi.org/10.1007/s00417-003-0684-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-003-0684-y

Keywords

Navigation