Skip to main content

Advertisement

Log in

Prediction of cognitive decline in healthy aging based on neuropsychiatric symptoms and PET-biomarkers of Alzheimer's disease

  • Short Commentary
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Neuropsychiatric symptoms (NPS) have been associated with a risk of accelerated cognitive decline or conversion to dementia of the Alzheimer’s Disease (AD) type. Moreover, the NPS were also associated with higher AD biomarkers (brain tau and amyloid burden) even in non-demented patients. But the effect of the relationship between NPS and biomarkers on cognitive decline has not yet been studied. This work aims to assess the relationship between longitudinal cognitive changes and NPS, specifically depression and anxiety, in association with AD biomarkers in healthy middle-aged to older participants. The cohort consisted of 101 healthy participants aged 50–70 years, 66 of whom had neuropsychological assessments of memory, executive functions, and global cognition at a 2-year follow-up. At baseline, NPS were assessed using the Beck Depression and Anxiety Inventories while brain tau and amyloid loads were measured using positron emission topography. For tau burden, THK5351 uptake is used as a proxy of tau and neuroinflammation. Participants, declining or remaining stable at follow-up, were categorized into groups for each cognitive domain. Group classification was investigated using binary logistic regressions based on combined AD biomarkers and the two NPS. The results showed that an association between anxiety and prefrontal amyloid burden significantly classified episodic memory decline, while the classification of global cognitive decline involved temporal and occipital amyloid burden but not NPS. Moreover, depression together with prefrontal and hippocampal tau burden were associated with a decline in memory. The classification of participants based on executive decline was related to depression and mainly prefrontal tau burden. These findings suggest that the combination of NPS and brain biomarkers of AD predicts the occurrence of cognitive decline in aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are not publicly available due to privacy or ethical restrictions but are available upon reasonable request.

References

  1. Geda YE, Roberts RO, Knopman DS et al (2008) Prevalence of neuropsychiatric symptoms in mild cognitive impairment and normal cognitive aging: population-based study. Arch Gen Psychiatry 65:1193–1198. https://doi.org/10.1001/archpsyc.65.10.1193

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mortby ME, Ismail Z, Anstey KJ (2018) Prevalence estimates of mild behavioral impairment in a population-based sample of pre-dementia states and cognitively healthy older adults. Int Psychogeriatr 30:221–232. https://doi.org/10.1017/S1041610217001909

    Article  PubMed  Google Scholar 

  3. Geda YE, Smith GE, Knopman DS et al (2004) De novo genesis of neuropsychiatric symptoms in mild cognitive impairment (MCI). Int Psychogeriatr 16:51–60. https://doi.org/10.1017/S1041610204000067

    Article  PubMed  Google Scholar 

  4. Rosenberg PB, Mielke MM, Appleby BS et al (2013) The association of neuropsychiatric symptoms in MCI with incident dementia and alzheimer disease. Am J Geriatr Psychiatry 21:685–695. https://doi.org/10.1016/j.jagp.2013.01.006

    Article  PubMed  Google Scholar 

  5. Burhanullah MH, Tschanz JT, Peters ME et al (2020) Neuropsychiatric symptoms as risk factors for cognitive decline in clinically normal older adults: the Cache county study. Am J Geriatr Psychiatry 28:64–71. https://doi.org/10.1016/j.jagp.2019.03.023

    Article  PubMed  Google Scholar 

  6. Krell-Roesch J, Syrjanen JA, Machulda MM et al (2021) Neuropsychiatric symptoms and the outcome of cognitive trajectories in older adults free of dementia: The Mayo clinic study of aging. Int J Geriatr Psychiatry 36:1362–1369. https://doi.org/10.1002/gps.5528

    Article  PubMed  PubMed Central  Google Scholar 

  7. Panza F, Lozupone M, Bellomo A, Imbimbo BP (2019) Do anti-amyloid-β drugs affect neuropsychiatric status in Alzheimer’s disease patients? Ageing Res Rev 55:100948. https://doi.org/10.1016/j.arr.2019.100948

    Article  CAS  PubMed  Google Scholar 

  8. Mori T, Shimada H, Shinotoh H et al (2014) Apathy correlates with prefrontal amyloid β deposition in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 85:449–455. https://doi.org/10.1136/jnnp-2013-306110

    Article  PubMed  Google Scholar 

  9. Bensamoun D, Guignard R, Furst AJ et al (2016) Associations between neuropsychiatric symptoms and cerebral amyloid deposition in cognitively impaired elderly people. J Alzheimers Dis 49:387–398. https://doi.org/10.3233/JAD-150181

    Article  CAS  PubMed  Google Scholar 

  10. Krell-Roesch J, Lowe VJ, Neureiter J et al (2018) Depressive and anxiety symptoms and cortical amyloid deposition among cognitively normal elderly persons: the Mayo clinic study of aging. Int Psychogeriatr 30:245–251. https://doi.org/10.1017/S1041610217002368

    Article  PubMed  Google Scholar 

  11. Brendel M, Pogarell O, Xiong G et al (2015) Depressive symptoms accelerate cognitive decline in amyloid-positive MCI patients. Eur J Nucl Med Mol Imaging 42:716–724. https://doi.org/10.1007/s00259-014-2975-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johansson M, Stomrud E, Lindberg O et al (2020) Apathy and anxiety are early markers of Alzheimer’s disease. Neurobiol Aging 85:74–82. https://doi.org/10.1016/j.neurobiolaging.2019.10.008

    Article  CAS  PubMed  Google Scholar 

  13. Yasuno F, Kazui H, Morita N et al (2016) High amyloid-β deposition related to depressive symptoms in older individuals with normal cognition: a pilot study. Int J Geriatr Psychiatry 31:920–928. https://doi.org/10.1002/gps.4409

    Article  PubMed  Google Scholar 

  14. Ismail Z, Smith EE, Geda Y et al (2016) Neuropsychiatric symptoms as early manifestations of emergent dementia: provisional diagnostic criteria for mild behavioral impairment. Alzheimers Dementia 12:195–202. https://doi.org/10.1016/j.jalz.2015.05.017

    Article  Google Scholar 

  15. Ismail Z, Agüera-Ortiz L, Brodaty H et al (2017) The mild behavioral impairment checklist (MBI-C): a rating scale for neuropsychiatric symptoms in pre-dementia populations. J Alzheimers Dis 56:929–938. https://doi.org/10.3233/JAD-160979

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lussier FZ, Pascoal TA, Chamoun M et al (2020) Mild behavioral impairment is associated with β-amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimers Dementia 16:192–199. https://doi.org/10.1002/alz.12007

    Article  Google Scholar 

  17. Tommasi NS, Gonzalez C, Briggs D et al (2021) Affective symptoms and regional cerebral tau burden in early-stage Alzheimer’s disease. Int J Geriatr Psychiatry 36:1050–1058. https://doi.org/10.1002/gps.5530

    Article  PubMed  PubMed Central  Google Scholar 

  18. Babulal GM, Roe CM, Stout SH et al (2021) Depression is associated with tau and not amyloid positron emission tomography in cognitively normal adults. J Alzheimers Dis 74(4):1045–1055

    Article  Google Scholar 

  19. Yasuno F, Minami H, Hattori H, for the Alzheimer’s Disease Neuroimaging Initiative (2021) Relationship between neuropsychiatric symptoms and Alzheimer’s disease pathology: an in vivo positron emission tomography study. Int J Geriatr Psychiatry 36:598–605. https://doi.org/10.1002/gps.5459

    Article  PubMed  Google Scholar 

  20. Tissot C, Therriault J, Pascoal TA et al (2021) Association between regional tau pathology and neuropsychiatric symptoms in aging and dementia due to Alzheimer’s disease. Alzheimers Dementia Transl Res Clin Interv. https://doi.org/10.1002/trc2.12154

    Article  Google Scholar 

  21. Jack CR, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216. https://doi.org/10.1016/S1474-4422(12)70291-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rizzolo L, Narbutas J, Van Egroo M et al (2021) Relationship between brain AD biomarkers and episodic memory performance in healthy aging. Brain Cogn 148:105680. https://doi.org/10.1016/j.bandc.2020.105680

    Article  PubMed  Google Scholar 

  23. Mattis S (1988) Dementia rating scale. Professional manual. Psychological Assessment Resources, Odessa, FL

    Google Scholar 

  24. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  25. Beck AT, Epstein N, Brown G, Steer RA (1988) An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 56:893–897. https://doi.org/10.1037/0022-006X.56.6.893

    Article  CAS  PubMed  Google Scholar 

  26. Beck AT, Steer RA, Carbin MG (1988) Psychometric properties of the Beck depression inventory: twenty-five years of evaluation. Clin Psychol Rev 8:77–100. https://doi.org/10.1016/0272-7358(88)90050-5

    Article  Google Scholar 

  27. Mouraux C, Van Egroo M, Chylinski D et al (2023) Effort during prolonged wakefulness is associated with performance to attentional and executive tasks but not with cortical excitability in late-middle-aged healthy individuals. Neuropsychology 37:77–92. https://doi.org/10.1037/neu0000868

    Article  PubMed  Google Scholar 

  28. Sarazin M, Chauviré V, Gerardin E et al (2010) The amnestic syndrome of hippocampal type in Alzheimer’s disease: an MRI study. JAD 22:285–294. https://doi.org/10.3233/JAD-2010-091150

    Article  PubMed  Google Scholar 

  29. Sánchez-Benavides G, Gómez-Ansón B, Molinuevo JL et al (2010) Medial temporal lobe correlates of memory screening measures in normal aging, MCI, and AD. J Geriatr Psychiatry Neurol 23:100–108. https://doi.org/10.1177/0891988709355271

    Article  PubMed  Google Scholar 

  30. Narbutas J, Van Egroo M, Chylinski D et al (2021) Associations between cognitive complaints, memory performance, mood, and amyloid-β accumulation in healthy amyloid negative late-midlife individuals. J Alzheimers Dis 83:127–141. https://doi.org/10.3233/JAD-210332

    Article  CAS  PubMed  Google Scholar 

  31. Klunk WE, Koeppe RA, Price JC et al (2015) The Centiloid project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s Dementia 11:1-15.e4. https://doi.org/10.1016/j.jalz.2014.07.003

    Article  PubMed  Google Scholar 

  32. Ishiki A, Harada R, Kai H et al (2018) Neuroimaging-pathological correlations of [18F]THK5351 PET in progressive supranuclear palsy. Acta Neuropathol Commun 6:53. https://doi.org/10.1186/s40478-018-0556-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rolls ET, Huang C-C, Lin C-P et al (2020) Automated anatomical labelling atlas 3. Neuroimage 206:116189. https://doi.org/10.1016/j.neuroimage.2019.116189

    Article  PubMed  Google Scholar 

  34. Craik FIM, Salthouse TA (2011) The handbook of aging and cognition, 3rd edn. Psychology Press, New York

    Book  Google Scholar 

  35. Rentz DM, Mormino EC, Papp KV et al (2017) Cognitive resilience in clinical and preclinical Alzheimer’s disease: the association of amyloid and tau burden on cognitive performance. Brain Imaging Behav 11:383–390. https://doi.org/10.1007/s11682-016-9640-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ismail R, Parbo P, Madsen LS et al (2020) The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: a longitudinal PET study. J Neuroinflammation 17:151. https://doi.org/10.1186/s12974-020-01820-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leal SL, Lockhart SN, Maass A et al (2018) Subthreshold amyloid predicts tau deposition in aging. J Neurosci 38:4482–4489. https://doi.org/10.1523/JNEUROSCI.0485-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Narbutas J, Chylinski D, Van Egroo M et al (2021) Positive effect of cognitive reserve on episodic memory, executive and attentional functions taking into account amyloid-beta, tau, and apolipoprotein E status. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2021.666181

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sperling RA, Mormino EC, Schultz AP et al (2019) The impact of amyloid-beta and tau on prospective cognitive decline in older individuals. Ann Neurol 85:181–193. https://doi.org/10.1002/ana.25395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dumurgier J, Hanseeuw BJ, Hatling FB et al (2017) Alzheimer’s biomarkers and future decline in cognitive normal older adults. J Alzheimers Dis 60:1451–1459. https://doi.org/10.3233/JAD-170511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carrillo-Mora P, Luna R, Colín-Barenque L (2014) Amyloid beta: multiple mechanisms of toxicity and only some protective effects? Oxid Med Cell Longev 2014:e795375. https://doi.org/10.1155/2014/795375

    Article  CAS  Google Scholar 

  42. Joannette M, Bocti C, Dupont PS et al (2020) Education as a moderator of the relationship between episodic memory and amyloid load in normal aging. J Gerontol Ser A 75:1820–1826. https://doi.org/10.1093/gerona/glz235

    Article  CAS  Google Scholar 

  43. Banning LCP, Ramakers IHGB, Köhler S et al (2020) The association between biomarkers and neuropsychiatric symptoms across the Alzheimer’s disease spectrum. Am J Geriatr Psychiatry 28:735–744. https://doi.org/10.1016/j.jagp.2020.01.012

    Article  PubMed  Google Scholar 

  44. Peters ME, Lyketsos CG (2015) Beyond memory: a focus on the other neuropsychiatric symptoms of dementia. Am J Geriatr Psychiatry 23:115–118. https://doi.org/10.1016/j.jagp.2014.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  45. Neureiter J, Krell-Roesch J, Pink A et al (2016) Amyloid-β, neuropsychiatric symptoms and the risk of incident mild cognitive impairment: a prospective cohort study (S35.003). Neurology. https://doi.org/10.1212/WNL.86.16_supplement.S35.003

    Article  Google Scholar 

  46. Apostolova L, Goukasian N, Do T et al (2016) Effect of brain amyloidosis on the emergence of neuropsychiatric behaviors in MCI over time (I12.012). Neurology 86(Suppl 16):P2.232

    Article  Google Scholar 

  47. Martínez NF, Allen IE, Kramer J et al (2021) Neuropsychiatric symptoms in early and late onset Alzheimer’s Disease (2452). Neurology. https://doi.org/10.1212/WNL.96.15_supplement.2452

    Article  PubMed  Google Scholar 

  48. Murugan NA, Chiotis K, Rodriguez-Vieitez E et al (2019) Cross-interaction of tau PET tracers with monoamine oxidase B: evidence from in silico modelling and in vivo imaging. Eur J Nucl Med Mol Imaging 46:1369–1382. https://doi.org/10.1007/s00259-019-04305-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harada R, Ishiki A, Kai H et al (2018) Correlations of 18F-THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J Nucl Med 59:671–674. https://doi.org/10.2967/jnumed.117.197426

    Article  CAS  PubMed  Google Scholar 

  50. Van Egroo M, Chylinski D, Narbutas J et al (2021) Early brainstem [18F]THK5351 uptake is linked to cortical hyperexcitability in healthy aging. JCI Insight 6:e142514. https://doi.org/10.1172/jci.insight.142514

    Article  PubMed  PubMed Central  Google Scholar 

  51. D’Amelio M, Rossini PM (2012) Brain excitability and connectivity of neuronal assemblies in Alzheimer’s disease: from animal models to human findings. Prog Neurobiol 99:42–60. https://doi.org/10.1016/j.pneurobio.2012.07.001

    Article  PubMed  Google Scholar 

Download references

Funding

For this project, Lucas Ronat received a grant from the MITACS Globalink program. This work was supported by the Fonds National de la Recherche Scientifique (CS is a research associate, CB and GV are senior research associates, and FC and CP are research directors at the FRS-FNRS) and by the Wallonia-Brussels Federation (Concerted Research Actions – grant 17/21-09 SLEEPDEM).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LR, CB, GV, FC, AH; methodology: LR, CB, AH; data acquisition and process: JN, MVE, DC, GB, VM, CS, MAB, CP, ES, PM, GV, FC and CB; formal analysis and investigation: LR; writing—original draft preparation: LR; writing—review and editing: all authors; funding acquisition: LR, CS, CB, GV, FC, CP; supervision: CB, AH.

Corresponding author

Correspondence to Christine Bastin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronat, L., Hanganu, A., Chylinski, D. et al. Prediction of cognitive decline in healthy aging based on neuropsychiatric symptoms and PET-biomarkers of Alzheimer's disease. J Neurol 271, 2067–2077 (2024). https://doi.org/10.1007/s00415-023-12131-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-12131-0

Keywords

Navigation