Skip to main content
Log in

Nystagmus only with fixation in the light: a rare central sign due to cerebellar malfunction

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

A Correction to this article was published on 28 April 2022

This article has been updated

Abstract

Fixation nystagmus refers to the nystagmus that appears or markedly increases with fixation. While relatively common in infantile (congenital) nystagmus, acquired fixation nystagmus is unusual and has been ascribed to lesions involving the cerebellar nuclei or the fibers projecting from the cerebellum to the brainstem. We aimed to report the clinical features of patients with acquired fixation nystagmus and discuss possible mechanisms using a model simulation and diagnostic significance. We describe four patients with acquired fixation nystagmus that appears or markedly increases with visual fixation. All patients had lesions involving the cerebellum or dorsal medulla. All patients showed direction-changing gaze-evoked nystagmus, impaired smooth pursuit, and decreased vestibular responses on head-impulse tests. The clinical implication of fixation nystagmus is that it may occur in central lesions that impair both smooth pursuit and the vestibulo-ocular reflex (VOR) but without creating a spontaneous nystagmus in the dark. We develop a mathematical model that hypothesizes that fixation nystagmus reflects a central tone imbalance due to abnormal function in cerebellar circuits that normally optimize the interaction between visual following (pursuit) and VOR during attempted fixation. Patients with fixation nystagmus have central lesions involving the cerebellar circuits that are involved in visual–vestibular interactions and normally eliminate biases that cause a spontaneous nystagmus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Anonymized data will be shared by request from any qualified investigator.

Change history

References

  1. Kim HA, Yi HA, Lee H (2016) Failure of fixation suppression of spontaneous nystagmus in cerebellar infarction: frequency, pattern, and a possible structure. Cerebellum 15:182–189

    Article  CAS  PubMed  Google Scholar 

  2. Mantokoudis G, Wyss T, Zamaro E, Korda A, Wagner F, Sauter TC et al (2021) Stroke prediction based on the spontaneous nystagmus suppression test in dizzy patients: a diagnostic accuracy study. Neurology 97:e42–e51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alpert JN (1974) Failure of fixation suppression A pathologic effect of vision on caloric nystagmus. Neurology 24:891–896

    Article  CAS  PubMed  Google Scholar 

  4. Cnyrim CD, Newman-Toker D, Karch C et al (2008) Bedside differentiation of vestibular neuritis from central “vestibular pseudoneuritis.” J Neurol Neurosurg Psychiatry 79:458–460

    Article  CAS  PubMed  Google Scholar 

  5. Kornhuber HH (1974) Nystagmus and related phenomena in man: an outline of otoneurology. In: Kornhuber HH (ed) Vestibular system part 2: Psychophysics, applied aspects and general interpretations. Springer, Berlin, pp 193–232

    Chapter  Google Scholar 

  6. Huh YE, Kim JS (2013) Bedside evaluation of dizzy patients. J Clin Neurol 9:203–213

    Article  PubMed  PubMed Central  Google Scholar 

  7. Choi JY, Kim JH, Kim HJ, Glasauer S, Kim JS (2015) Central paroxysmal positional nystagmus: characteristics and possible mechanisms. Neurology 84:2238–2246

    Article  PubMed  Google Scholar 

  8. Lee SU, Choi JY, Kim HJ, Kim JS (2018) Recurrent spontaneous vertigo with interictal headshaking nystagmus. Neurology 90:e2135–e2145

    Article  PubMed  Google Scholar 

  9. Kim HJ, Park SH, Koo JW, Kim CY, Kim YH, Han JH (2016) Bilaterally abnormal head impulse tests indicate a large cerebellopontine angle tumor. J Clin Neurol 12:65–74

    Article  PubMed  Google Scholar 

  10. Lee SU, Kim HJ, Choi JY, Koo JW, Yang X, Kim JS (2020) Evolution in the findings of head-impulse tests during the attacks of Menière’s disease. Otol Neurotol 41:e744–e750

    Article  PubMed  Google Scholar 

  11. Lee SU, Kim HJ, Choi JY, Kim JS (2018) Lower brainstem melanocytoma masquerading as vestibular paroxysmia. J Neurol 265:1222–1225

    Article  PubMed  Google Scholar 

  12. Newman-Toker DE, Sharma P, Chowdhury M, Clemons TM, Zee DS, Della Santina CC (2009) Penlight-cover test: a new bedside method to unmask nystagmus. J Neurol Neurosurg Psychiatry 80:900–903

    Article  CAS  PubMed  Google Scholar 

  13. Korda A, Zee DS, Wyss T, Zamaro E, Caversaccio MD, Wagner F et al (2021) Impaired ‘fixation suppression’of horizontal vestibular nystagmus during smooth pursuit: pathophysiology and clinical implications. Eur J Neurol 28:2614–2621

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leigh RJ, Zee DS (2015) The neurology of eye movements. Oxford University Press, New York

    Book  Google Scholar 

  15. Brodsky MC, Dell’Osso LF (2014) A unifying neurologic mechanism for infantile nystagmus. JAMA Ophthalmol 132:761–768

    Article  PubMed  Google Scholar 

  16. Dell’Osso L, Daroff R (1975) Congenital nystagmus waveforms and foveation strategy. Doc Ophthalmol 39:155–182

    Article  CAS  PubMed  Google Scholar 

  17. Winkelman BH, Howlett MH, Hölzel MB, Joling C, Fransen KH, Pangeni G et al (2019) Nystagmus in patients with congenital stationary night blindness (CSNB) originates from synchronously firing retinal ganglion cells. PLoS Biol 17:e3000174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Collewijn H, Winterson BJ, Dubois MF (1978) Optokinetic eye movements in albino rabbits: inversion in anterior visual field. Science 199:1351–1353

    Article  CAS  PubMed  Google Scholar 

  19. Optican LM, Zee DS (1984) A hypothetical explanation of congenital nystagmus. Biol Cybern 50:119–134

    Article  CAS  PubMed  Google Scholar 

  20. Dell’Osso LF (2019) Ocular motor system control models and the cerebellum: hypothetical mechanisms. Cerebellum 18:605–614

    Article  PubMed  Google Scholar 

  21. Jacobs JB, Dell’Osso LF (2004) Congenital nystagmus: hypotheses for its genesis and complex waveforms within a behavioral ocular motor system model. J Vis 4:604–625

    Article  PubMed  Google Scholar 

  22. Daroff RB, Hoyt WF, Bettman JW, Lessel S (1973) Suppression and facilitation of congenital nystagmus by vertical lines. Neurology 23:530–533

    Article  CAS  PubMed  Google Scholar 

  23. Barreiro AK, Bronski JC, Anastasio TJ (2009) Bifurcation theory explains waveform variability in a congenital eye movement disorder. J Comput Neurosci 26:321–329

    Article  PubMed  Google Scholar 

  24. Baier B, Dieterich M (2011) Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology 76:361–365

    Article  PubMed  Google Scholar 

  25. Baier B, Stoeter P, Dieterich M (2009) Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain 132:2114–2124

    Article  CAS  PubMed  Google Scholar 

  26. Voogd J, Schraa-Tam CK, van der Geest JN, De Zeeuw CI (2012) Visuomotor cerebellum in human and nonhuman primates. Cerebellum 11:392–410

    Article  PubMed  Google Scholar 

  27. Lee SH, Park SH, Kim JS, Kim HJ, Yunusov F, Zee DS (2014) Isolated unilateral infarction of the cerebellar tonsil: ocular motor findings. Ann Neurol 75:429–434

    Article  PubMed  Google Scholar 

  28. Zee D, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 46:878–899

    Article  CAS  PubMed  Google Scholar 

  29. Büttner U, Waespe W (1984) Purkinje cell activity in the primate flocculus during optokinetic stimulation, smooth pursuit eye movements and VOR-suppression. Exp Brain Res 55:97–104

    Article  PubMed  Google Scholar 

  30. Lisberger SG (2009) Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience 162:763–776

    Article  CAS  PubMed  Google Scholar 

  31. Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res 72:213–224

    Article  CAS  PubMed  Google Scholar 

  32. Lisberger SG, Fuchs AF (1974) Response of flocculus Purkinje cells to adequate vestibular stimulation in the alert monkey: fixation vs. compensatory eye movements. Brain Res 69:347–353

    Article  CAS  PubMed  Google Scholar 

  33. Marti S, Straumann D, Büttner U, Glasauer S (2008) A model-based theory on the origin of downbeat nystagmus. Exp Brain Res 188:613–631

    Article  PubMed  Google Scholar 

  34. Lee H, Kim JS, Chung EJ, Yi HA, Chung IS, Lee SR (2009) Infarction in the territory of anterior inferior cerebellar artery spectrum of audiovestibular loss. Stroke 40:3745–3751

    Article  PubMed  Google Scholar 

  35. Park HK, Kim JS, Strupp M, Zee DS (2013) Isolated floccular infarction: impaired vestibular responses to horizontal head impulse. J Neurol 260:1576–1582

    Article  PubMed  Google Scholar 

  36. McCabe B, Ryu JH, Sekitani T (1972) Further experiments on vestibular compensation. Laryngoscope 82:381–396

    Article  CAS  PubMed  Google Scholar 

  37. Mccabe BF, Ryu JH (1969) Experiments on vestibular compensation. Laryngoscope 79:1728–1736

    Article  CAS  PubMed  Google Scholar 

  38. Smith PF (2020) Why the cerebellar shutdown/clampdown hypothesis of vestibular compensation is inconsistent with neurophysiological evidence. J Vestib Res 30:295–303

    Article  PubMed  Google Scholar 

  39. Choi JY, Kim HJ, Kim JS (2018) Recent advances in head impulse test findings in central vestibular disorders. Neurology 90:602–612

    Article  PubMed  Google Scholar 

  40. Lee SU, Park SH, Park JJ, Kim HJ, Han MK, Bae HJ, Kim JS (2015) Dorsal medullary infarction: distinct syndrome of isolated central vestibulopathy. Stroke 46:3081–3087

    Article  PubMed  Google Scholar 

  41. Kim SH, Zee DS, du Lac S, Kim HJ, Kim JS (2016) Nucleus prepositus hypoglossi lesions produce a unique ocular motor syndrome. Neurology 87:2026–2033

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sharpe JA (1979) Pursuit paretic nystagmus. Ann Neurol 6:458

    Article  CAS  PubMed  Google Scholar 

  43. Sharpe JA (2008) Neurophysiology and neuroanatomy of smooth pursuit: lesion studies. Brain Cogn 68:241–254

    Article  PubMed  Google Scholar 

  44. Zee DS, Friendlich AR, Robinson DA (1974) The mechanism of downbeat nystagmus. Arch Neurol 30:227–237

    Article  CAS  PubMed  Google Scholar 

  45. Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912–924

    Article  CAS  PubMed  Google Scholar 

  46. Straube A, Scheuerer W, Eggert T (1997) Unilateral cerebellar lesions affect initiation of ipsilateral smooth pursuit eye movements in humans. Ann Neurol 42:891–898

    Article  CAS  PubMed  Google Scholar 

  47. Johnston JL, Sharpe JA, Morrow MJ (1992) Paresis of contralateral smooth pursuit and normal vestibular smooth eye movements after unilateral brainstem lesions. Ann Neurol 31:495–502

    Article  CAS  PubMed  Google Scholar 

  48. Krauzlis RJ, Lisberger SG (1994) A model of visually-guided smooth pursuit eye movements based on behavioral observations. J Comput Neurosci 1:265–283

    Article  CAS  PubMed  Google Scholar 

  49. Robinson DA, Gordon J, Gordon S (1986) A model of the smooth pursuit eye movement system. Biol Cybern 55:43–57

    Article  CAS  PubMed  Google Scholar 

  50. Lisberger SG (2010) Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between. Neuron 66:477–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krauzlis RJ, Lisberger SG (1994) Temporal properties of visual motion signals for the initiation of smooth pursuit eye movements in monkeys. J Neurophysiol 72:150–162

    Article  CAS  PubMed  Google Scholar 

  52. Berthoz A, Grantyn A (1986) Neuronal mechanisms underlying eye-head coordination. Prog Brain Res 64:325–343

    Article  CAS  PubMed  Google Scholar 

  53. Roy JE, Cullen KE (1998) A neural correlate for vestibulo-ocular reflex suppression during voluntary eye–head gaze shifts. Nat Neurosci 1:404–410

    Article  CAS  PubMed  Google Scholar 

  54. Lee H, Kim HA (2020) Reversal of spontaneous nystagmus during visual fixation in dorsal medullary infarction. J Neurol 267:1547–1549

    Article  PubMed  Google Scholar 

  55. Yee RD, Baloh RW, Honrubia V, Lau CG, Jenkins HA (1979) Slow build-up of optokinetic nystagmus associated with downbeat nystagmus. Invest Ophthalmol Vis Sci 18:622–629

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare (HI14C3477), and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. NRF-2016R1D1A1B04935568).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Lee wrote the manuscript and analyzed and interpreted the data. Drs. H.J. Kim J.Y. Choi and J.H. Choi, and Zee analyzed and interpreted the data, and revised the manuscript. Dr. J.S. Kim designed and conceptualized the study, interpreted the data, and revised the manuscript.

Corresponding author

Correspondence to Ji-Soo Kim.

Ethics declarations

Conflicts of interest

Drs. Lee, H.J. Kim, J.Y. Choi, and J.H. Choi report no disclosures. Dr. JS Kim serves as an Associate Editor of Frontiers in Neuro-otology and on the editorial boards of the Journal of Clinical Neurology, Frontiers in Neuro-ophthalmology, Journal of Neuro-ophthalmology, Journal of Vestibular Research, Journal of Neurology, and Medicine. Dr. Zee serves on the editorial board for Frontiers in Neuro-otology, The cerebellum, and the Journal of the Italian Neurology Society. The authors thank Sung-Jin Jo for the illustration.

Ethical Standard

This study followed the tenets of the Declaration of Helsinki and was performed according to the guidelines of Institutional Review Board of Seoul National University Bundang Hospital (B-1910/570-107) and Pusan National University Yangsan Hospital (05-2019-170).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 7384 KB)

Supplementary file2 (MP4 7488 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SU., Kim, HJ., Choi, JY. et al. Nystagmus only with fixation in the light: a rare central sign due to cerebellar malfunction. J Neurol 269, 3879–3890 (2022). https://doi.org/10.1007/s00415-022-11108-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11108-9

Keywords

Navigation