Skip to main content
Log in

Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Rehabilitation seems to promote brain plasticity, but objective measures of efficacy are lacking and there is a limited understanding of the mechanisms underlying functional recovery.

Objective

To study functional and structural brain changes induced by gait rehabilitation.

Methods

We enrolled MS inpatients (EDSS 4.5–6.5) undergoing a 4-week neurorehabilitation. Several clinical measures were obtained, including: 2-min walk test (2MWT), dynamic gait index (DGI), Berg balance scale (BBS). Furthermore, motor-task functional MRI (fMRI) of plantar dorsiflexion, resting state fMRI, and regional diffusion tensor imaging (DTI) metrics were obtained. All the assessments were performed at baseline (T0), after the end of the rehabilitation period (T1) and 3 months later (T2).

Results

Twenty-nine patients were enrolled at T0, 26 at T1, and 16 completed all timepoints. At T1, there was a significant improvement of 2MWT, DGI, and BBS scores, along with a reduced extent of the widespread activation related to the motor task at the fMRI and an increased functional connectivity in the precentral and post-central gyrus, bilaterally. None of these changes were maintained at T2.

Conclusions

Our findings show a short-term beneficial effect of motor rehabilitation on gait performances in MS, accompanied by brain functional reorganization in the sensory-motor network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ontaneda D, Thompson AJ, Fox RJ, Cohen JA (2017) Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet 389(10076):1357–1366

    Article  PubMed  Google Scholar 

  2. Khan F, Turner-Stokes L, Ng L, Kilpatrick T (2007) Multidisciplinary rehabilitation for adults with multiple sclerosis. Cochrane Database Syst Rev 2:CD006036

    Google Scholar 

  3. Motl RW, Sandroff BM, Kwakkel G, Dalgas U, Feinstein A, Heesen C et al (2017) Exercise in patients with multiple sclerosis. Lancet Neurol. 16(10):848–856

    Article  PubMed  Google Scholar 

  4. Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, Matthews PM et al (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123(Pt 11):2314–2320

    Article  PubMed  Google Scholar 

  5. Lee M, Reddy H, Johansen-Berg H, Pendlebury S, Jenkinson M, Smith S et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47(5):606–613

    Article  PubMed  CAS  Google Scholar 

  6. Rocca MA, Colombo B, Falini A, Ghezzi A, Martinelli V, Scotti G et al (2005) Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 4(10):618–626

    Article  PubMed  Google Scholar 

  7. Mezzapesa DM, Rocca MA, Rodegher M, Comi G, Filippi M (2008) Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Hum Brain Mapp 29(5):562–573

    Article  PubMed  Google Scholar 

  8. Tomassini V, Matthews PM, Thompson AJ, Fuglo D, Geurts JJ, Johansen-Berg H et al (2012) Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol 8(11):635–646

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prosperini L, Piattella MC, Gianni C, Pantano P (2015) Functional and structural brain plasticity enhanced by motor and cognitive rehabilitation in multiple sclerosis. Neural Plast 2015:481574

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Giglio L, Tona F, De Luca F, Petsas N, Prosperini L, Bianchi V et al (2016) Multiple sclerosis: changes in thalamic resting-state functional connectivity induced by a home-based cognitive rehabilitation program. Radiology 280(1):202–211

    Article  PubMed  Google Scholar 

  11. Chiaravalloti ND, Wylie G, Leavitt V, Deluca J (2012) Increased cerebral activation after behavioral treatment for memory deficits in MS. J Neurol 259(7):1337–1346

    Article  PubMed  Google Scholar 

  12. Cerasa A, Gioia MC, Valentino P, Nistico R, Chiriaco C, Pirritano D et al (2013) Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: a randomized trial with fMRI correlates. Neurorehabil Neural Repair 27(4):284–295

    Article  PubMed  Google Scholar 

  13. Parisi L, Rocca MA, Valsasina P, Panicari L, Mattioli F, Filippi M (2014) Cognitive rehabilitation correlates with the functional connectivity of the anterior cingulate cortex in patients with multiple sclerosis. Brain Imaging Behav 8(3):387–393

    Article  PubMed  Google Scholar 

  14. Parisi L, Rocca MA, Mattioli F, Copetti M, Capra R, Valsasina P et al (2014) Changes of brain resting state functional connectivity predict the persistence of cognitive rehabilitation effects in patients with multiple sclerosis. Mult Scler 20(6):686–694

    Article  PubMed  Google Scholar 

  15. Rasova K, Prochazkova M, Tintera J, Ibrahim I, Zimova D, Stetkarova I (2015) Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study. Int J Rehabil Res 38(1):49–54

    Article  PubMed  Google Scholar 

  16. Rasova K, Krasensky J, Havrdova E, Obenberger J, Seidel Z, Dolezal O et al (2005) Is it possible to actively and purposely make use of plasticity and adaptability in the neurorehabilitation treatment of multiple sclerosis patients? A pilot project. Clin Rehabil 19(2):170–181

    Article  PubMed  CAS  Google Scholar 

  17. Tomassini V, Johansen-Berg H, Jbabdi S, Wise RG, Pozzilli C, Palace J et al (2012) Relating brain damage to brain plasticity in patients with multiple sclerosis. Neurorehabil Neural Repair 26(6):581–593

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ibrahim I, Tintera J, Skoch A, Jiru F, Hlustik P, Martinkova P et al (2011) Fractional anisotropy and mean diffusivity in the corpus callosum of patients with multiple sclerosis: the effect of physiotherapy. Neuroradiology 53(11):917–926

    Article  PubMed  Google Scholar 

  19. Bonzano L, Tacchino A, Brichetto G, Roccatagliata L, Dessypris A, Feraco P et al (2014) Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. Neuroimage 90:107–116

    Article  PubMed  Google Scholar 

  20. Prosperini L, Fanelli F, Petsas N, Sbardella E, Tona F, Raz E et al (2014) Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board. Radiology 273(2):529–538

    Article  PubMed  Google Scholar 

  21. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90:449–468

    Article  PubMed  PubMed Central  Google Scholar 

  22. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM et al (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci USA. 106(17):7209–7214

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bergsland N, Lagana MM, Tavazzi E, Caffini M, Tortorella P, Baglio F et al (2015) Corticospinal tract integrity is related to primary motor cortex thinning in relapsing–remitting multiple sclerosis. Mult Scler 21(14):1771–1780

    Article  PubMed  CAS  Google Scholar 

  24. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505

    Article  PubMed  Google Scholar 

  25. Rocca MA, Gavazzi C, Mezzapesa DM, Falini A, Colombo B, Mascalchi M et al (2003) A functional magnetic resonance imaging study of patients with secondary progressive multiple sclerosis. Neuroimage 19(4):1770–1777

    Article  PubMed  Google Scholar 

  26. Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15(3):239–245

    Article  PubMed  Google Scholar 

  27. Filippi M, Preziosa P, Rocca MA (2017) Brain mapping in multiple sclerosis: lessons learned about the human brain. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.09.021

  28. Groppo E, Baglio F, Cattaneo D, Tavazzi E, Bergsland N, Di Tella S et al (2017) Multidisciplinary rehabilitation is efficacious and induces neural plasticity in multiple sclerosis even when complicated by progressive multifocal leukoencephalopathy. Front Neurol 8:491

    Article  PubMed  PubMed Central  Google Scholar 

  29. Morgen K, Kadom N, Sawaki L, Tessitore A, Ohayon J, McFarland H et al (2004) Training-dependent plasticity in patients with multiple sclerosis. Brain 127(Pt 11):2506–2517

    Article  PubMed  Google Scholar 

  30. Boutiere C, Rey C, Zaaraoui W, Le Troter A, Rico A, Crespy L et al (2017) Improvement of spasticity following intermittent theta burst stimulation in multiple sclerosis is associated with modulation of resting-state functional connectivity of the primary motor cortices. Mult Scler 23(6):855–863

    Article  PubMed  Google Scholar 

  31. Motl RW, McAuley E, Snook EM (2005) Physical activity and multiple sclerosis: a meta-analysis. Mult Scler 11(4):459–463

    Article  PubMed  Google Scholar 

  32. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312

    Article  PubMed  CAS  Google Scholar 

  33. Boyke J, Driemeyer J, Gaser C, Buchel C, May A (2008) Training-induced brain structure changes in the elderly. J Neurosci 28(28):7031–7035

    Article  PubMed  CAS  Google Scholar 

  34. Filippi M, Ceccarelli A, Pagani E, Gatti R, Rossi A, Stefanelli L et al (2010) Motor learning in healthy humans is associated to gray matter changes: a tensor-based morphometry study. PLoS ONE 5(4):e10198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pardini M, Bonzano L, Bergamino M, Bommarito G, Feraco P, Murugavel A et al (2015) Cingulum bundle alterations underlie subjective fatigue in multiple sclerosis. Mult Scler 21(4):442–447

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from Fondazione Italiana Sclerosi Multipla (FISM) (Grant # 2013/R/26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rovaris.

Ethics declarations

Conflicts of interest

All authors report no disclosures.

Ethical statement

The study has been approved by the local ethics committee and has, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All the subjects recruited in the study gave their written informed consent prior to their inclusion in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavazzi, E., Bergsland, N., Cattaneo, D. et al. Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study. J Neurol 265, 1393–1401 (2018). https://doi.org/10.1007/s00415-018-8859-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8859-y

Keywords

Navigation