Skip to main content

Advertisement

Log in

Higher blood–brain barrier permeability is associated with higher white matter hyperintensities burden

Journal of Neurology Aims and scope Submit manuscript

Abstract

The pathogenesis of white matter hyperintensities (WMH) is incompletely understood but blood–brain barrier (BBB) dysfunction may play a key role. This study aimed to investigate the relationship between BBB permeability and the severity of WMH burden. Consecutive participants without symptomatic stroke history presented for physical examination were recruited in this cross-sectional study and divided into three WMH burden groups according to total Fazekas scores. They received dynamic contrast-enhanced-magnetic resonance imaging to measure BBB permeability, and received Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). A total of 102 participants aged 49–90 years (mean age of 69.82 years) were enrolled (36 with low WMH burden, 35 with medium WMH burden, and 31 with high WMH burden). Multivariable linear regression analyses revealed that participants with higher WMH burden had significantly higher BBB leakage rate and area under the leakage curve in normal-appearing white matter, WMH, cortical gray matter, and deep gray matter (DGM) after adjustment for age, sex, and vascular risk factors. Scores on MMSE and MoCA decreased with increasing leakage rate in WMH and DGM after adjustment for age, sex, WMH burden, and education years. We found that higher BBB permeability is associated with higher WMH burden and cognitive decline. The compromised BBB integrity may be a critical contributor to the pathogenesis of WMH and part of a series of pathological processes that finally lead to cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Wardlaw JM, Smith C, Dichgans M (2013) Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 12(5):483–497. doi:10.1016/S1474-4422(13)70060-7

    Article  PubMed  Google Scholar 

  2. Fan Y, Yang X, Tao Y, Lan L, Zheng L, Sun J (2015) Tight junction disruption of blood–brain barrier in white matter lesions in chronic hypertensive rats. NeuroReport 26(17):1039–1043. doi:10.1097/WNR.0000000000000464

    Article  CAS  PubMed  Google Scholar 

  3. Wharton SB, Simpson JE, Brayne C, Ince PG (2015) Age-associated white matter lesions: the MRC Cognitive Function and Ageing Study. Brain Pathol 25(1):35–43. doi:10.1111/bpa.12219

    Article  PubMed  Google Scholar 

  4. Farrall AJ, Wardlaw JM (2009) Blood–brain barrier: ageing and microvascular disease—systematic review and meta-analysis. Neurobiol Aging 30(3):337–352. doi:10.1016/j.neurobiolaging.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  5. Wong SM, Jansen JF, Zhang CE, Staals J, Hofman PA, van Oostenbrugge RJ, Jeukens CR, Backes WH (2017) Measuring subtle leakage of the blood–brain barrier in cerebrovascular disease with DCE-MRI: test–retest reproducibility and its influencing factors. J Magn Reson Imaging. doi:10.1002/jmri.25540

    Google Scholar 

  6. Topakian R, Barrick TR, Howe FA, Markus HS (2010) Blood–brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leukoaraiosis. J Neurol Neurosurg Psychiatry 81(2):192–197. doi:10.1136/jnnp.2009.172072

    Article  CAS  PubMed  Google Scholar 

  7. Wardlaw JM, Doubal FN, Valdes-Hernandez M, Wang X, Chappell FM, Shuler K, Armitage PA, Carpenter TC, Dennis MS (2013) Blood–brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. Stroke 44(2):525–527. doi:10.1161/STROKEAHA.112.669994

    Article  PubMed  Google Scholar 

  8. Taheri S, Gasparovic C, Huisa BN, Adair JC, Edmonds E, Prestopnik J, Grossetete M, Shah NJ, Wills J, Qualls C, Rosenberg GA (2011) Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 42(8):2158–2163. doi:10.1161/STROKEAHA.110.611731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munoz Maniega S, Chappell FM, Valdes Hernandez MC, Armitage PA, Makin SD, Heye AK, Thrippleton MJ, Sakka E, Shuler K, Dennis MS, Wardlaw JM (2017) Integrity of normal-appearing white matter: influence of age, visible lesion burden and hypertension in patients with small-vessel disease. J Cereb Blood Flow Metab 37(2):644–656. doi:10.1177/0271678X16635657

    Article  PubMed  Google Scholar 

  10. Yang Y, Rosenberg GA (2011) Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42(11):3323–3328. doi:10.1161/STROKEAHA.110.608257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781. doi:10.1016/j.neuroimage.2012.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MM, Niessen WJ (2009) White matter lesion extension to automatic brain tissue segmentation on MRI. Neuroimage 45(4):1151–1161. doi:10.1016/j.neuroimage.2009.01.011

    Article  PubMed  Google Scholar 

  13. Lavini C, Verhoeff JJ (2010) Reproducibility of the gadolinium concentration measurements and of the fitting parameters of the vascular input function in the superior sagittal sinus in a patient population. Magn Reson Imaging 28(10):1420–1430. doi:10.1016/j.mri.2010.06.017

    Article  PubMed  Google Scholar 

  14. Heye AK, Culling RD, Valdes Hernandez Mdel C, Thrippleton MJ, Wardlaw JM (2014) Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage Clin 6:262–274. doi:10.1016/j.nicl.2014.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149(2):351–356. doi:10.2214/ajr.149.2.351

    Article  CAS  PubMed  Google Scholar 

  16. Zhang CE, Wong SM, van de Haar HJ, Staals J, Jansen JF, Jeukens CR, Hofman PA, van Oostenbrugge RJ, Backes WH (2017) Blood–brain barrier leakage is more widespread in patients with cerebral small vessel disease. Neurology 88(5):426–432. doi:10.1212/WNL.0000000000003556

    Article  CAS  PubMed  Google Scholar 

  17. Villringer K, Sanz Cuesta BE, Ostwaldt AC, Grittner U, Brunecker P, Khalil AA, Schindler K, Eisenblatter O, Audebert H, Fiebach JB (2017) DCE-MRI blood–brain barrier assessment in acute ischemic stroke. Neurology 88(5):433–440. doi:10.1212/WNL.0000000000003566

    Article  PubMed  Google Scholar 

  18. Wardlaw JM, Doubal F, Armitage P, Chappell F, Carpenter T, Munoz Maniega S, Farrall A, Sudlow C, Dennis M, Dhillon B (2009) Lacunar stroke is associated with diffuse blood–brain barrier dysfunction. Ann Neurol 65(2):194–202. doi:10.1002/ana.21549

    Article  PubMed  Google Scholar 

  19. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV (2015) Establishment and dysfunction of the blood–brain barrier. Cell 163(5):1064–1078. doi:10.1016/j.cell.2015.10.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ostergaard L, Engedal TS, Moreton F, Hansen MB, Wardlaw JM, Dalkara T, Markus HS, Muir KW (2016) Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab 36(2):302–325. doi:10.1177/0271678X15606723

    Article  PubMed  Google Scholar 

  21. Muller K, Courtois G, Ursini MV, Schwaninger M (2017) New insight into the pathogenesis of cerebral small-vessel diseases. Stroke 48(2):520–527. doi:10.1161/STROKEAHA.116.012888

    Article  PubMed  Google Scholar 

  22. Rosenberg GA, Wallin A, Wardlaw JM, Markus HS, Montaner J, Wolfson L, Iadecola C, Zlokovic BV, Joutel A, Dichgans M, Duering M, Schmidt R, Korczyn AD, Grinberg LT, Chui HC, Hachinski V (2016) Consensus statement for diagnosis of subcortical small vessel disease. J Cereb Blood Flow Metab 36(1):6–25. doi:10.1038/jcbfm.2015.172

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9(7):689–701. doi:10.1016/S1474-4422(10)70104-6

    Article  PubMed  Google Scholar 

  24. Shi Y, Thrippleton MJ, Makin SD, Marshall I, Geerlings MI, de Craen AJ, van Buchem MA, Wardlaw JM (2016) Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J Cereb Blood Flow Metab 36(10):1653–1667. doi:10.1177/0271678X16662891

    Article  PubMed  Google Scholar 

  25. van der Veen PH, Muller M, Vincken KL, Hendrikse J, Mali WP, van der Graaf Y, Geerlings MI, Group SS (2015) Longitudinal relationship between cerebral small-vessel disease and cerebral blood flow: the second manifestations of arterial disease-magnetic resonance study. Stroke 46(5):1233–1238. doi:10.1161/STROKEAHA.114.008030

    Article  PubMed  Google Scholar 

  26. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, Harrington MG, Chui HC, Law M, Zlokovic BV (2015) Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85(2):296–302. doi:10.1016/j.neuron.2014.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roseborough A, Ramirez J, Black SE, Edwards JD (2017) Associations between beta-amyloid and white matter hyperintensities: a systematic review. Alzheimers Dement. doi:10.1016/j.jalz.2017.01.026

    PubMed  Google Scholar 

  28. Valdes Hernandez M, Allerhand M, Glatz A, Clayson L, Munoz Maniega S, Gow A, Royle N, Bastin M, Starr J, Deary I, Wardlaw J (2016) Do white matter hyperintensities mediate the association between brain iron deposition and cognitive abilities in older people? Eur J Neurol 23(7):1202–1209. doi:10.1111/ene.13006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith EE, Saposnik G, Biessels GJ, Doubal FN, Fornage M, Gorelick PB, Greenberg SM, Higashida RT, Kasner SE, Seshadri S, American Heart Association Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Functional Genomics and Translational Biology, Council on Hypertension (2017) Prevention of stroke in patients with silent cerebrovascular disease: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48(2):e44–e71. doi:10.1161/STR.0000000000000116

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant Nos. 81271309, and 81301016) and Beijing Municipal Administration of Hospitals’ Youth Programme (QML20150303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Hu.

Ethics declarations

Conflicts of interest

The authors declare no financial or other conflicts of interest.

Ethical standard

The design of this study was approved by the Ethics Committee of Beijing Chao-Yang Hospital, Capital Medical University.

Informed consent

All subjects consented to participate in our study and signed an informed consent to the use of data for research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, M., Zhang, X. et al. Higher blood–brain barrier permeability is associated with higher white matter hyperintensities burden. J Neurol 264, 1474–1481 (2017). https://doi.org/10.1007/s00415-017-8550-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8550-8

Keywords

Navigation