Skip to main content

Advertisement

Log in

A novel gain-of-function mutation in the ITPR1 suppressor domain causes spinocerebellar ataxia with altered Ca2+ signal patterns

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

We report three affected members, a mother and her two children, of a non-consanguineous Irish family who presented with a suspected autosomal dominant spinocerebellar ataxia characterized by early motor delay, poor coordination, gait ataxia, and dysarthria. Whole exome sequencing identified a novel missense variant (c.106C>T; p.[Arg36Cys]) in the suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor gene (ITPR1) as the cause of the disorder, resulting in a molecular diagnosis of spinocerebellar ataxia type 29. In the absence of grandparental DNA, microsatellite genotyping of healthy family members was used to confirm the de novo status of the ITPR1 variant in the affected mother, which supported pathogenicity. The Arg36Cys variant exhibited a significantly higher IP3-binding affinity than wild-type (WT) ITPR1 and drastically changed the property of the intracellular Ca2+ signal from a transient to a sigmoidal pattern, supporting a gain-of-function disease mechanism. To date, ITPR1 mutation has been associated with a loss-of-function effect, likely due to reduced Ca2+ release. This is the first gain-of-function mechanism to be associated with ITPR1-related SCA29, providing novel insights into how enhanced Ca2+ release can also contribute to the pathogenesis of this neurological disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fogel BL, Lee H, Deignan JL et al (2014) Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol 71:1237–1246

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ohba C, Osaka H, Iai M et al (2013) Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics 14:225–232

    Article  CAS  PubMed  Google Scholar 

  3. Huang L, Chardon JW, Carter MT et al (2012) Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 7:67

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sasaki M, Ohba C, Iai M et al (2015) Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene. J Neurol 262:1278–1284

    Article  CAS  PubMed  Google Scholar 

  5. Barresi S, Niceta M, Alfieri P et al (2016) Mutations in the IRBIT domain of ITPR1 are a frequent cause of autosomal dominant nonprogressive congenital ataxia. Clin Genet 91:86–91

    Article  PubMed  Google Scholar 

  6. van de Leemput J, Chandran J, Knight MA et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hara K, Shiga A, Nozaki H et al (2008) Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71:547–551

    Article  CAS  PubMed  Google Scholar 

  8. Marelli C, van de Leemput J, Johnson JO et al (2011) SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. Arch Neurol 68:637–643

    Article  PubMed  PubMed Central  Google Scholar 

  9. Novak MJ, Sweeney MG, Li A et al (2010) An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. Mov Disord 25:2176–2182

    Article  PubMed  Google Scholar 

  10. Iwaki A, Kawano Y, Miura S et al (2008) Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35

    Article  CAS  PubMed  Google Scholar 

  11. Di Gregorio E, Orsi L, Godani M et al (2010) Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum 9:115–123

    Article  PubMed  Google Scholar 

  12. Obayashi M, Ishikawa K, Izumi Y et al (2012) Prevalence of inositol 1,4,5-triphosphate receptor type 1 gene deletion, the mutation for spinocerebellar ataxia type 15, in Japan screened by gene dosage. J Hum Genet 57:202–206

    Article  CAS  PubMed  Google Scholar 

  13. Gerber S, Alzayady KJ, Burglen L et al (2016) Recessive and dominant de novo ITPR1 mutations cause Gillespie syndrome. Am J Hum Genet 98:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McEntagart M, Williamson KA, Rainger JK et al (2016) A restricted repertoire of de novo mutations in ITPR1 cause Gillespie syndrome with evidence for dominant-negative effect. Am J Hum Genet 98:981–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325

    Article  CAS  PubMed  Google Scholar 

  16. Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446

    Article  CAS  PubMed  Google Scholar 

  17. Casey JP, Støve SI, McGorrian C et al (2015) NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment. Sci Rep 5:16022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamada N, Makino Y, Clark RA et al (1994) Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3R1: structure, function, regulation of expression and chromosomal localization. Biochem J 302:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshikawa F, Uchiyama T, Iwasaki H et al (1999) High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli. Biochem Biophys Res Commun 257:792–797

    Article  CAS  PubMed  Google Scholar 

  21. Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K (2011) Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. Biochem Biophys Res Commun 410:754–758

    Article  CAS  PubMed  Google Scholar 

  22. Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K (1996) Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 271:18277–18284

    Article  CAS  PubMed  Google Scholar 

  23. Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278:16551–16560

    Article  CAS  PubMed  Google Scholar 

  24. Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI (2004) Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 63:2288–2292

    Article  CAS  PubMed  Google Scholar 

  27. Synofzik M, Beetz C, Bauer C et al (2011) Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet 48:407–412

    Article  PubMed  Google Scholar 

  28. Kattah JC, Kolsky MP, Guy J, O’Doherty D (1983) Primary position vertical nystagmus and cerebellar ataxia. Arch Neurol 40:310–314

    Article  CAS  PubMed  Google Scholar 

  29. Steinlin M, Zangger B, Boltshauser E (1998) Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol 40:148–154

    Article  CAS  PubMed  Google Scholar 

  30. Gonzaga-Jauregui C, Harel T, Gambin T et al (2015) Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep 12:1169–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bosanac I, Yamazaki H, Matsu-ura T, Michikawa T, Mikoshiba K, Ikura M (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203

    Article  CAS  PubMed  Google Scholar 

  32. Rossi AM, Riley AM, Tovey SC et al (2009) Synthetic partial agonists reveal key steps in IP3 receptor activation. Nat Chem Biol 5:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin CC, Baek K, Lu Z (2011) Apo and InsP3-bound crystal structures of the ligand-binding domain of an InsP3 receptor. Nat Struct Mol Biol 18:1172–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kasumu A, Liang X, Egorova P, Vorontsova D, Bezprozvanny I (2012) Chronic suppression of inositol 1, 4,5-triphosphate receptor-mediated calcium signaling in cerebellar Purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci 32:12786–12796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Egorova P, Zakharova O, Vlasova O, Bezprozvanny I (2016) In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J Neurophysiol 115:2840–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tu JC, Xiao B, Yuan JP et al (1998) Homer binds a novel proline rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21:717–726

    Article  CAS  PubMed  Google Scholar 

  38. Kasri NN, Holmes AM, Bultynck G et al (2004) Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J 23:312–321

    Article  CAS  PubMed  Google Scholar 

  39. Bezprozvanny I (2011) Role of inositol 1,4,5-trishosphate receptors in pathogenesis of Huntington’s disease and spinocerebellar ataxias. Neurochem Res 36(7):1186–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank the family involved for their significant contribution to research and the use of genetic samples and clinical information. This work was supported by a Medical Research Charities Group Grant (to S.A.L. and J.P.C.) from the Health Research Board (MRCG/2013/02) and the Children’s Fund for Health, The Fundraising Office for Temple Street Children’s University Hospital, Dublin, Ireland (MRCG/2013/02). Jillian Casey is supported by a Medical Research Charities Group Grant (MRCG/2013/02). Functional studies were supported by Grant-in-Aid for Scientific Research (S) Grant Number 25221002 (to K.M) and Grant-in-Aid for Scientific Research (C) Grant Number 15K06761 (to C.H). We are grateful to the Support Unit for Bio-Material Analysis, RIKEN BSI Research Resources Center, for technical help with plasmid sequence analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jillian P. Casey.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical standards

This study was approved by the appropriate ethics committee and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casey, J.P., Hirouchi, T., Hisatsune, C. et al. A novel gain-of-function mutation in the ITPR1 suppressor domain causes spinocerebellar ataxia with altered Ca2+ signal patterns. J Neurol 264, 1444–1453 (2017). https://doi.org/10.1007/s00415-017-8545-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8545-5

Keywords

Navigation