Skip to main content

Advertisement

Log in

Cerebrospinal-fluid orexin levels and daytime somnolence in frontotemporal dementia

  • Short Commentary
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Daytime somnolence and sleep–wake cycle disturbances are commonly encountered symptoms in Frontotemporal Dementia (FTD). Orexin-A (Hypocretin-1) is a hypothalamic neuropeptide regulating the sleep–wake rhythm. We investigated the cerebrospinal-fluid (CSF) orexin levels in a population of FTD patients and evaluated whether there is a relationship between daytime somnolence and CSF orexin concentrations. CSF orexin levels were measured in a sample of FTD patients (n = 11) compared to a population of non-demented controls (n = 13) similar for age and sex. Moreover, CSF orexin concentrations were correlated with daytime somnolence investigated by means of the Epworth Sleepiness Scale (ESS) in both FTD patients and controls. FTD patients showed CSF orexin concentrations (164.3 ± 66.45 vs 170.81 ± 42.73 pg/mL) and ESS scores (7.45 ± 4.36 vs 3.84 ± 1.82) not different from controls. However, three FTD patients showed pathological daytime sleepiness (ESS > 10) coupled with the lowest CSF orexin levels. In addition, we found a significant negative correlation between CSF orexin levels and ESS scores in the FTD population (R = −0.91; p < 0.0001), which was not evident in the control group (R = 0.16; p > 0.05). This is the first study investigating CSF orexin concentrations in FTD. We did not find differences in CSF orexin concentrations between FTD patients and controls. However, a significant negative correlation between daytime somnolence and CSF orexin levels was evident in FTD patients. Moreover, we have found that pathological daytime somnolence was evident in those FTD patients with the lowest CSF orexin levels. Based on these findings, we argued that lower orexin levels may be permissive for increased daytime somnolence in FTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58(11):1615–1621

    Article  CAS  PubMed  Google Scholar 

  2. Neary D, Snowden J, Mann D (2005) Frontotemporal dementia. Lancet Neurol 4(11):771–780

    Article  PubMed  Google Scholar 

  3. Chare L, Hodges JR, Leyton CE, McGinley C, Tan RH, Kril JJ, Halliday GM (2014) New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. J Neurol Neurosurg Psychiatry 85(8):865–870

  4. Bonakis A, Economou NT, Paparrigopoulos T, Bonanni E, Maestri M, Carnicelli L et al (2014) Sleep in frontotemporal dementia is equally or possibly more disrupted, and at an earlier stage, when compared to sleep in Alzheimer’s disease. J Alzheimers Dis 38(1):85–91

    PubMed  Google Scholar 

  5. Kundermann B, Thum A, Rocamora R, Haag A, Krieg JC, Hemmeter U (2011) Comparison of polysomnographic variables and their relationship to cognitive impairment in patients with Alzheimer’s disease and frontotemporal dementia. J Psychiatr Res 45(12):1585–1592

    Article  PubMed  Google Scholar 

  6. Anderson KN, Hatfield C, Kipps C, Hastings M, Hodges JR (2009) Disrupted sleep and circadian patterns in frontotemporal dementia. Eur J Neurol 16(3):317–323

    Article  CAS  PubMed  Google Scholar 

  7. Harper DG, Stopa EG, McKee AC, Satlin A, Harlan PC, Goldstein R, Volicer L (2001) Differential circadian rhythm disturbances in men with Alzheimer disease and frontotemporal degeneration. Arch Gen Psychiatry 58(4):353–360

    Article  CAS  PubMed  Google Scholar 

  8. Kanbayashi T, Sagawa Y, Takemura F, Ito SU, Tsutsui K, Hishikawa Y, Nishino S (2011) The pathophysiologic basis of secondary narcolepsy and hypersomnia. Curr Neurol Neurosci Rep 11(2):235–241

    Article  CAS  PubMed  Google Scholar 

  9. Kilduff TS, Peyron C (2000) The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci 23(8):359–365

    Article  CAS  PubMed  Google Scholar 

  10. Kirchgessner AL, Liu M (1999) Orexin synthesis and response in the gut. Neuron 24(4):941–951

    Article  CAS  PubMed  Google Scholar 

  11. Çoban A, Bilgiç B, Lohmann E, Küçükali Cİ, Benbir G, Karadeniz D et al (2013) Reduced orexin-A levels in frontotemporal dementia: possible association with sleep disturbance. Am J Alzheimers Dis Other Demen 28(6):606–611

    Article  PubMed  Google Scholar 

  12. Dalal MA, Schuld A, Haack M, Uhr M, Geisler P, Eisensehr I et al (2001) Normal plasma levels of orexin A (hypocretin-1) in narcoleptic patients. Neurology 56(12):1749–1751

    Article  CAS  PubMed  Google Scholar 

  13. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28(2):193–213

    Article  CAS  PubMed  Google Scholar 

  14. Vignatelli L, Plazzi G, Barbato A, Ferini-Strambi L, Manni R, Pompei F et al (2003) Italian version of the Epworth sleepiness scale: external validity. Neurol Sci 23(6):295–300

    Article  CAS  PubMed  Google Scholar 

  15. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6):540–545

    CAS  PubMed  Google Scholar 

  16. Sancesario GM, Esposito Z, Nuccetelli M, Bernardini S, Sorge R, Martorana A et al (2010) Abeta1-42 detection in CSF of Alzheimer’s disease is influenced by temperature: indication of reversible Abeta1-42 aggregation? Exp Neurol 223(2):371–376

    Article  CAS  PubMed  Google Scholar 

  17. Liguori C, Placidi F, Albanese M, Nuccetelli M, Izzi F, Marciani MG et al (2014) CSF beta-amyloid levels are altered in narcolepsy: a link with the inflammatory hypothesis? J Sleep Res 23(4):420–424

  18. Merlino G, Piani A, Gigli GL, Cancelli I, Rinaldi A, Baroselli A et al (2010) Daytime sleepiness is associated with dementia and cognitive decline in older Italian adults: a population-based study. Sleep Med 11(4):372–377

    Article  CAS  PubMed  Google Scholar 

  19. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24(12):726–731

    Article  CAS  PubMed  Google Scholar 

  20. Piguet O, Petersén A, Yin Ka Lam B, Gabery S, Murphy K, Hodges JR, Halliday GM (2011) Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol 69(2):312–319

    Article  PubMed Central  PubMed  Google Scholar 

  21. Engelborghs S, Maertens K, Vloeberghs E, Aerts T, Somers N, Mariën P, De Deyn PP (2006) Neuropsychological and behavioural correlates of CSF biomarkers in dementia. Neurochem Int 48(4):286–295

    Article  CAS  PubMed  Google Scholar 

  22. Grossman M, Farmer J, Leight S, Work M, Moore P, Van Deerlin V et al (2005) Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol 57(5):721–729

    Article  PubMed  Google Scholar 

  23. Kapaki E, Paraskevas GP, Papageorgiou SG, Bonakis A, Kalfakis N, Zalonis I, Vassilopoulos D (2008) Diagnostic value of CSF biomarker profile in frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord 22(1):47–53

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

Claudio Liguori, Andrea Romigi, Nicola Biagio Mercuri, Giuseppe Sancesario, Alessandro Martorana, Maria Albanese, Francesca Izzi, Marzia Nuccetelli, Giulia Maria Sancesario, Maria Grazia Marciani, Sergio Bernardini, Fabio Placidi report no disclosures or conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Liguori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liguori, C., Romigi, A., Mercuri, N.B. et al. Cerebrospinal-fluid orexin levels and daytime somnolence in frontotemporal dementia. J Neurol 261, 1832–1836 (2014). https://doi.org/10.1007/s00415-014-7455-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7455-z

Keywords

Navigation