Skip to main content

Advertisement

Log in

Selective retinal ganglion cell loss in familial dysautonomia

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

To define the retinal phenotype of subjects with familial dysautonomia (FD). A cross-sectional study was carried out in 90 subjects divided in three groups of 30 each (FD subjects, asymptomatic carriers and controls). The study was developed at the Dysautonomia Center, New York University Medical Center. All subjects underwent spectral domain optical coherence tomography (OCT) and full neuro-ophthalmic examinations. In a subset of affected subjects, visual evoked potentials and microperimetry were also obtained. We compared the retinal nerve fiber layer (RNFL) thickness from OCT between the three groups. OCT showed loss of the RNFL in all FD subjects predominantly in the maculopapillary region (63 % temporally, p < 0.0001; and 21 % nasally, p < 0.005). RNFL loss was greatest in older FD subjects and was associated with decreased visual acuity and color vision, central visual field defects, temporal optic nerve pallor, and delayed visual evoked potentials. Asymptomatic carriers of the FD gene mutation all had thinner RNFL (12 % globally, p < 0.005). OCT and clinical neuro-ophthalmological findings suggest that maculopapillary ganglion cells are primarily affected in FD subjects, leading to a specific optic nerve damage that closely resembles mitochondrial optic neuropathies. This raises the possibility that reduced IKAP levels may affect mitochondrial proteins and their function in the nervous system, particularly in the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riley CM, Day RA, Greeley DM, Landford WS (1949) Central autonomic dysfunction with defective lacrimation: I. Report of five cases. Pediatrics 3(4):468–478

    CAS  PubMed  Google Scholar 

  2. Dong J, Edelmann L, Bajwa AM et al (2002) Familial dysautonomia: detection of the IKBKAP IVS20(+6T–>C) and R696P mutations and frequencies among Ashkenazi Jews. Am J Med Genet 110(3):253–257

    Article  PubMed  Google Scholar 

  3. Mezey E, Parmalee A, Szalayova I et al (2003) Of splice and men: what does the distribution of IKAP mRNA in the rat tell us about the pathogenesis of familial dysautonomia? Brain Res 983(1–2):209–214

    Article  CAS  PubMed  Google Scholar 

  4. Anderson SL, Coli R, Daly IW et al (2001) Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 68(3):753–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Slaugenhaupt SA, Blumenfeld A, Gill SP et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68(3):598–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Smith AA, Dancis J (1964) Taste discrimination in familial dysautonomia. Pediatrics 33:441–443

    CAS  PubMed  Google Scholar 

  7. Norcliffe-Kaufmann L, Axelrod F, Kaufmann H (2010) Afferent baroreflex failure in familial dysautonomia. Neurology 75(21):1904–1911

    Article  PubMed Central  PubMed  Google Scholar 

  8. Axelrod FB, Iyer K, Fish I et al (1981) Progressive sensory loss in familial dysautonomia. Pediatrics 67(4):517–522

    CAS  PubMed  Google Scholar 

  9. Norcliffe-Kaufmann L, Kaufmann H (2012) Familial dysautonomia (Riley–Day syndrome): when baroreceptor feedback fails. Auton Neurosci 172(1–2):26–30

    Article  CAS  PubMed  Google Scholar 

  10. Macefield VG, Norcliffe-Kaufmann L, Axelrod FB, Kaufmann H (2013) Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia. J Physiol 591(Pt 3):689–700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Macefield VG, Norcliffe-Kaufmann L, Gutierrez J et al (2011) Can loss of muscle spindle afferents explain the ataxic gait in Riley–Day syndrome? Brain 134(Pt 11):3198–3208

    Article  PubMed Central  PubMed  Google Scholar 

  12. Liebman SD (1956) Ocular manifestations of Riley–Day syndrome; familial autonomic dysfunction. AMA Arch Ophthalmol 56(5):719–725

    Article  CAS  PubMed  Google Scholar 

  13. Kroop IG (1956) The production of tears in familial dysautonomia; preliminary report. J Pediatr 48(3):328–329

    Article  CAS  PubMed  Google Scholar 

  14. Josaitis CA, Matisoff M (2002) Familial dysautonomia in review: diagnosis and treatment of ocular manifestations. Adv Exp Med Biol 506(Pt A):71–80

    PubMed  Google Scholar 

  15. Liebman SD (1968) Riley–Day syndrome: long-term ophthalmologic observations. Trans Am Ophthalmol Soc 66:95–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Goldberg MF, Payne JW, Brunt PW (1968) Ophthalmologic studies of familial dysautonomia. The Riley–Day syndrome. Arch Ophthalmol 80(6):732–743

    Article  CAS  PubMed  Google Scholar 

  17. Mendoza-Santiesteban CE, Hedges TR 3rd, Norcliffe-Kaufmann L et al (2012) Clinical neuro-ophthalmic findings in familial dysautonomia. J Neuroophthalmol 32(1):23–26

    Article  PubMed  Google Scholar 

  18. Verdina T, Giacomelli G, Sodi A, et al. Biofeedback rehabilitation of eccentric fixation in patients with Stargardt disease. Eur J Ophthalmol 2013:0

  19. Tarita-Nistor L, Gonzalez EG, Markowitz SN, Steinbach MJ (2009) Plasticity of fixation in patients with central vision loss. Vis Neurosci 26(5–6):487–494

    Article  PubMed  Google Scholar 

  20. Rizzo JF 3rd, Lessell S, Liebman SD (1986) Optic atrophy in familial dysautonomia. Am J Ophthalmol 102(4):463–467

    Article  PubMed  Google Scholar 

  21. Diamond GA, D’Amico RA, Axelrod FB (1987) Optic nerve dysfunction in familial dysautonomia. Am J Ophthalmol 104(6):645–648

    Article  CAS  PubMed  Google Scholar 

  22. Groom M, Kay MD, Corrent GF (1997) Optic neuropathy in familial dysautonomia. J Neuroophthalmol 17(2):101–102

    Article  CAS  PubMed  Google Scholar 

  23. Fraser JA, Biousse V, Newman NJ (2010) The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol 55(4):299–334

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kesler A, Pianka P (2003) Toxic optic neuropathy. Curr Neurol Neurosci Rep 3(5):410–414

    Article  PubMed  Google Scholar 

  25. Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011) Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog Retin Eye Res 30(2):81–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang MY, Sadun AA (2013) Drug-related mitochondrial optic neuropathies. J Neuroophthalmol 33(2):172–178

    Article  CAS  PubMed  Google Scholar 

  27. Sadun AA, Win PH, Ross-Cisneros FN et al (2000) Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc 98:223–232 (discussion 32–5)

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Sadun AA, Martone JF, Muci-Mendoza R et al (1994) Epidemic optic neuropathy in Cuba. Eye findings. Arch Ophthalmol 112(5):691–699

    Article  CAS  PubMed  Google Scholar 

  29. Amati-Bonneau P, Milea D, Bonneau D et al (2009) OPA1-associated disorders: phenotypes and pathophysiology. Int J Biochem Cell Biol 41(10):1855–1865

    Article  CAS  PubMed  Google Scholar 

  30. Hedges TR 3rd, Hirano M, Tucker K, Caballero B (1997) Epidemic optic and peripheral neuropathy in Cuba: a unique geopolitical public health problem. Surv Ophthalmol 41(4):341–353

    Article  PubMed  Google Scholar 

  31. Yu-Wai-Man P, Bailie M, Atawan A et al (2011) Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye (Lond) 25(5):596–602

    Article  CAS  Google Scholar 

  32. Barboni P, Savini G, Parisi V et al (2011) Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age. Ophthalmology 118(10):2076–2080

    Article  PubMed  Google Scholar 

  33. Barboni P, Savini G, Valentino ML et al (2005) Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology 112(1):120–126

    Article  PubMed  Google Scholar 

  34. Newman NJ (2005) Hereditary optic neuropathies: from the mitochondria to the optic nerve. Am J Ophthalmol 140(3):517–523

    CAS  PubMed  Google Scholar 

  35. Sadun AA, Carelli V, Salomao SR et al (2003) Extensive investigation of a large Brazilian pedigree of 11778/haplogroup J Leber hereditary optic neuropathy. Am J Ophthalmol 136(2):231–238

    Article  PubMed  Google Scholar 

  36. Cohn AC, Toomes C, Hewitt AW et al (2008) The natural history of OPA1-related autosomal dominant optic atrophy. Br J Ophthalmol 92(10):1333–1336

    Article  CAS  PubMed  Google Scholar 

  37. Rubin BY, Anderson SL (2008) The molecular basis of familial dysautonomia: overview, new discoveries and implications for directed therapies. Neuromol Med 10(3):148–156

    Article  CAS  Google Scholar 

  38. Lee G, Papapetrou EP, Kim H et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Axelrod FB, Liebes L, Gold-Von Simson G et al (2011) Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr Res 70(5):480–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Barboni P, Savini G, Feuer WJ et al (2012) Retinal nerve fiber layer thickness variability in Leber hereditary optic neuropathy carriers. Eur J Ophthalmol 22(6):985–991

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the patients and families who participated in this study. This work was supported by the Dysautonomia Foundation Inc., the National Institutes of Health (U54-NS065736-01) and The Massachusetts Lions Clubs/Research to Prevent Blindness Challenge Grant.

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Mendoza-Santiesteban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza-Santiesteban, C.E., Hedges III, T.R., Norcliffe-Kaufmann, L. et al. Selective retinal ganglion cell loss in familial dysautonomia. J Neurol 261, 702–709 (2014). https://doi.org/10.1007/s00415-014-7258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7258-2

Keywords

Navigation