Skip to main content
Log in

The relationship between cortisol and verbal memory in the early stages of Huntington’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Hypothalamic pituitary adrenal (HPA) axis hyperactivity has been linked to learning and memory difficulties in a range of neurodegenerative and neuropsychiatric conditions. In Huntington’s disease (HD), both declines in learning and memory and HPA axis dysfunction are present early in the disease. However, the relationship between specific learning and memory deficits and HPA axis functioning in HD has not been examined. The aim of this study was to investigate cortisol levels in relation to verbal learning and memory in pre-diagnosed (pre-HD) participants and patients at the early stages of diagnosed HD (early-HD). Cortisol concentration was assayed in saliva samples from 57 participants (17 early-HD, 20 pre-HD, and 20 controls) at four time-points across a 24-h period. Verbal memory was assessed using the California Verbal Learning Test—Second Edition (CVLT-II). We focused statistical analyses on the late evening cortisol concentration, and examined cortisol levels and verbal memory function in relation to diagnostic group (control, pre-HD, early-HD), and in a separate set of analyses combining pre-HD and early-HD (and excluding controls) we also examined cortisol and verbal memory performance in relation to the severity of HD-related motor signs. Of these two classification approaches, HD motor sign severity was more strongly associated with high evening cortisol levels and both reduced information encoding and memory retrieval. Separately, there was also a trend of higher cortisol levels in pre-HD. The findings suggest hypercortisolism and the underlying pathological changes may begin many years before a clinical diagnosis is made, but the memory decline associated with HPA axis disturbance may only become detectable once motor signs become pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  2. Petersén A, Björkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 24:961–967

    Article  PubMed  Google Scholar 

  3. Björkqvist M, Petersén A, Bacos K, Isaacs J, Norlén P, Gil J, Popovic N, Sundler F, Bates GP, Tabrizi SJ, Brundin P, Mulder H (2006) Progressive alterations in the hypothalamic–pituitary–adrenal axis in the R6/2 transgenic mouse model of Huntington’s disease. Hum Mol Genet 15:1713–1721

    Article  PubMed  Google Scholar 

  4. Heuser IJE, Chase TN, Maral Mouradian M (1991) The limbic-hypothalamic–pituitary–adrenal axis in Huntington’s disease. Biol Psychiatry 30:943–952

    Article  PubMed  CAS  Google Scholar 

  5. Kurlan R, Caine E, Rubin A, Nemeroff CB, Bissette G, Zaczek R, Coyle J, Spielman FJ, Irvine C, Shoulson I (1988) Cerebrospinal fluid correlates of depression in Huntington’s disease. Arch Neurol 45:881–883

    Article  PubMed  CAS  Google Scholar 

  6. Leblhuber F, Peichl M, Neubauer C, Reisecker F, Steinparz FX, Windhager E, Maschek W (1995) Serum dehydroepiandrosterone and cortisol measurements in Huntington’s chorea. J Neurol Sci 132:76–79

    Article  PubMed  CAS  Google Scholar 

  7. Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay J-P, Tranchant C, Broussolle E, Morin F, Bachoud-Levi A-C, Maison P (2009) Neuroendocrine disturbances in Huntington’s disease. PLoS ONE 4:e4962

    Article  PubMed  Google Scholar 

  8. van Duijn E, Selis MA, Giltay EJ, Zitman FG, Roos RA, van Pelt H, van der Mast RC (2010) Hypothalamic–pituitary–adrenal axis functioning in Huntington’s disease mutation carriers compared with mutation-negative first-degree controls. Brain Res Bull 83:232–237

    Article  PubMed  Google Scholar 

  9. Aziz NA, Pijl H, Frolich M, van der Graaf AWM, Roelfsema F, Roos RAC (2009) Increased hypothalamic–pituitary–adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metab 94:1223–1228

    Article  PubMed  CAS  Google Scholar 

  10. Hinkelmann K, Moritz S, Botzenhardt J, Riedesel K, Wiedemann K, Kellner M, Otte C (2009) Cognitive impairment in major depression: association with salivary cortisol. Biol Psychiatry 66:879–885

    Article  PubMed  CAS  Google Scholar 

  11. Csernansky JG, Dong H, Fagan AM, Wang L, Xiong C, Holtzman DM, Morris JC (2006) Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiatry 163:2164–2169

    Article  PubMed  Google Scholar 

  12. León-Carrión J, Atutxa AM, Mangas MA, Soto-Moreno A, Pumar A, Leon-Justel A, Martín-Rodriguez JF, Venegas E, Domínguez-Morales MR, Leal-Cerro A (2009) A clinical profile of memory impairment in humans due to endogenous glucocorticoid excess. Clin Endocrinol (Oxf) 70:192–200

    Article  Google Scholar 

  13. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, Delaney RC, McCarthy G, Charney DS, Innis RB (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152:973–981

    PubMed  CAS  Google Scholar 

  14. Lind K, Edman A, Nordlund A, Olsson T, Wallin A (2007) Increased saliva cortisol awakening response in patients with mild cognitive impairment. Dement Geriatr Cogn Disord 24:389–395

    Article  PubMed  Google Scholar 

  15. Lee BK, Glass TA, McAtee MJ, Wand GS, Bandeen-Roche K, Bolla KI, Schwartz BS (2007) Associations of salivary cortisol with cognitive function in the Baltimore memory study. Arch Gen Psychiatry 64:810–818

    Article  PubMed  CAS  Google Scholar 

  16. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  PubMed  CAS  Google Scholar 

  17. Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935

    Article  PubMed  CAS  Google Scholar 

  18. Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    Article  PubMed  CAS  Google Scholar 

  19. Spargo E, Everall IP, Lantos PL (1993) Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry 56:487–491

    Article  PubMed  CAS  Google Scholar 

  20. Grote HE, Bull ND, Howard ML, Van Dellen A, Blakemore C, Bartlett PF, Hannan AJ (2005) Cognitive disorders and neurogenesis deficits in Huntington’s disease mice are rescued by fluoxetine. Eur J Neurosci 22:2081–2088

    Article  PubMed  Google Scholar 

  21. Gil JM, Mohapel P, Araújo IM, Popovic N, Li JY, Brundin P, Petersén A (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis 20:744–751

    Article  PubMed  CAS  Google Scholar 

  22. Paulsen JS, Langbehn DR, Stout JC, Aylward E, Ross CA, Nance M, Guttman M, Johnson S, MacDonald M, Beglinger LJ, Duff K, Kayson E, Biglan K, Shoulson I, Oakes D, Hayden M, The Predict-HD investigators and coordinators of the Huntington Study Group (2007) Detection of Huntington’s disease decades before diagnosis: the predict-HD study. J Neurol Neurosurg Psychiatry 79:874–880

    Article  PubMed  Google Scholar 

  23. Solomon AC, Stout JC, Johnson SA, Langbehn DR, Aylward EH, Brandt J, Ross CA, Beglinger L, Hayden MR, Kieburtz K, Kayson E, Julian-Baros E, Duff K, Guttman M, Nance M, Oakes D, Shoulson I, Penziner E, Paulsen JS, Predict-HD investigators of the Huntington Study Group (2007) Verbal episodic memory declines prior to diagnosis in Huntington’s disease. Neuropsychologia 45:1767–1776

    Article  PubMed  Google Scholar 

  24. Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbussche E, Dom R (2004) Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation: a longitudinal follow-up study. J Neurol 251:935–942

    Article  PubMed  CAS  Google Scholar 

  25. Robins Wahlin TB, Lundin A, Dear K (2007) Early cognitive deficits in Swedish gene carriers of Huntington’s disease. Neuropsychology 21:31–44

    Article  PubMed  Google Scholar 

  26. Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC, Carlozzi N, Duff K, Beglinger LJ, Langbehn DR, Johnson SA, Biglan KM, Aylward EH, The PREDICT-HD Investigators and Coordinators of the Huntington Study Group (2011) Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25:1–14

    Article  PubMed  Google Scholar 

  27. Stout JC, Weaver M, Solomon AC, Queller S, Hui S, Johnson SA, Gray J, Beristain X, Wojcieszek J, Foroud T (2007) Are cognitive changes progressive in prediagnostic HD? Cogn Behav Neurol 20:212–218

    Article  PubMed  Google Scholar 

  28. Lundervold AJ, Reinvang I, Lundervold A (1994) Characteristic patterns of verbal memory function in patients with Huntington’s disease. Scand J Psychol 35:38–47

    Article  PubMed  CAS  Google Scholar 

  29. Massman PJ, Delis DC, Butters N, Levin BE, Salmon DP (1990) Are all subcortical dementias alike? Verbal learning and memory in Parkinson’s and Huntington’s disease patients. J Clin Exp Neuropsychol 12:729–744

    Article  PubMed  CAS  Google Scholar 

  30. Rosenberg NK, Sørensen SA, Christensen AL (1995) Neuropsychological characteristics of Huntington’s disease carriers: a double blind study. J Med Genet 32:600–604

    Article  PubMed  CAS  Google Scholar 

  31. Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2007) Plasma testosterone, dehydroepiandrosterone sulfate, and cortisol in female patients with Huntington’s disease. Neuro Endocrinol Lett 27:199–203

    Google Scholar 

  32. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  33. Huntington Study Group (1996) Unified Huntington’s disease rating scale: reliability and consistency. Mov Disord 11:136–142

    Article  Google Scholar 

  34. Penney JB, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 41:689–692

    Article  PubMed  Google Scholar 

  35. United Nations Educational Scientific and Cultural Organisation (2006) International standard classification of education (ISCED)—1997. UNESCO Institute for Statistics, Paris

    Google Scholar 

  36. The Psychological Corporation (2001) Wechsler test of adult reading. Pearson, San Antonio

    Google Scholar 

  37. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, International Huntington’s Disease Collaborative Group (2004) A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65:267–277

    Article  PubMed  CAS  Google Scholar 

  38. Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH (1996) The inventory of depressive symptomatology (IDS): psychometric properties. Psychol Med 26:477–486

    Article  PubMed  CAS  Google Scholar 

  39. Cohen S, Kamarck T, Mermelstein R (1983) A global measure of perceived stress. J Health Soc Behav 24:385–396

    Article  PubMed  CAS  Google Scholar 

  40. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28:193–213

    Article  PubMed  CAS  Google Scholar 

  41. Delis DC, Kramer JH, Kaplan E, Ober AB (2000) Californian verbal learning test—second edition. Adult version. Pearson, San Antonio

    Google Scholar 

  42. Lezak MD, Howieson DB, Loring DW (2004) Neuropsychological assessment—fourth edition. Oxford University Press, New York

    Google Scholar 

  43. Poll EM, Kreitschmann-Andermahr I, Langejuergen Y, Stanzel S, Gilsbach JM, Gressner A, Yagmur E (2007) Saliva collection method affects predictability of serum cortisol. Clin Chim Acta 382:15–19

    Article  PubMed  CAS  Google Scholar 

  44. Shirtcliff EA, Granger DA, Schwartz E, Curran MJ (2001) Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology 26:165–173

    Article  PubMed  CAS  Google Scholar 

  45. Vogeser M, Durner J, Seliger E, Auernhammer C (2006) Measurement of late-night salivary cortisol with an automated immunoassay system. Clin Chem Lab Med 44:1441–1445

    PubMed  CAS  Google Scholar 

  46. Carroll T, Raff H, Findling JW (2008) Late-night salivary cortisol measurement in the diagnosis of Cushing’s syndrome. Nat Clin Pract Endocrinol Metab 4:344–350

    Article  PubMed  CAS  Google Scholar 

  47. Gomez RG, Fleming SH, Keller J, Flores B, Kenna H, DeBattista C, Solvason B, Schatzberg AF (2006) The neuropsychological profile of psychotic major depression and its relation to cortisol. Biol Psychiatry 60:472–478

    Article  PubMed  Google Scholar 

  48. Murialdo G, Nobili F, Rollero A, Gianelli MV, Copello F, Rodriguez G, Polleri A (2000) Hippocampal perfusion and pituitary-adrenal axis in Alzheimer’s disease. Neuropsychobiology 42:51–57

    Article  PubMed  CAS  Google Scholar 

  49. Sapolsky RM, Uno H, Rebert CS, Finch CE (1990) Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 10:2897–2902

    PubMed  CAS  Google Scholar 

  50. Kassubek J, Juengling FD, Kioschies T, Henkel K, Karitzky J, Kramer B, Ecker D, Andrich J, Saft C, Kraus P, Aschoff AJ, Ludolph AC, Landwehrmeyer GB (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry 75:213–220

    PubMed  CAS  Google Scholar 

  51. Soneson C, Fontes M, Zhou Y, Denisov V, Paulsen JS, Kirik D, Petersén Å, The Huntington Study Group PREDICT-HD investigators (2010) Early changes in the hypothalamic region in prodromal Huntington disease revealed by MRI analysis. Neurobiol Dis 40:531–543

    Article  PubMed  Google Scholar 

  52. Swaab DF, Raadsheer FC, Endertt E, Hofman MA, Kamphorsta W, Ravid R (1994) Increased cortisol levels in aging and Alzheimer’s disease in postmortem cerebrospinal fluid. J Neuroendocrinol 6:681–687

    Article  PubMed  CAS  Google Scholar 

  53. Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32:756–765

    Article  PubMed  CAS  Google Scholar 

  54. Gilpin H, Whitcomb D, Cho K (2008) Atypical evening cortisol profile induces visual recognition memory deficit in healthy human subjects. Mol Brain 1:4

    Article  PubMed  Google Scholar 

  55. Aziz NA, Anguelova GV, Marinus J, Lammers GJ, Roos RA (2010) Sleep and circadian rhythm alterations correlate with depression and cognitive impairment in Huntington’s disease. Parkinsonism Relat Disord 16:345–350

    Article  PubMed  Google Scholar 

  56. Paulsen JS, Nehl C, Hoth KF, Kanz JE, Benjamin M, Conybeare R, McDowell B, Turner B (2005) Depression and stages of Huntington’s disease. J Neuropsychiatry Clin Neurosci 17:496–502

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the participants for giving generously of their time. We thank Dr. Terence Pang for contributing to the design of the study, Professor Edmond Chiu for helping with the clinical assessment of participants, and Professor Grahame Coleman for statistical advice. Finally we thank Ms. Angela Komiti for assisting with a portion of the data collection. The research was supported by a 2007 Pfizer Neuroscience Research Grant and funding from the School of Psychology and Psychiatry, Monash University. Neither of these institutions were involved in the design, conduct, or publication of this study.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard

This study have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie C. Stout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirbin, C.A., Chua, P., Churchyard, A. et al. The relationship between cortisol and verbal memory in the early stages of Huntington’s disease. J Neurol 260, 891–902 (2013). https://doi.org/10.1007/s00415-012-6732-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6732-y

Keywords

Navigation