Skip to main content

Advertisement

Log in

Forensic age estimation based on magnetic resonance imaging of the proximal humeral epiphysis in Chinese living individuals

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Forensic age estimation in living individuals is mainly based on radiological features, but direct radiography and computed tomography lead to a rise in ethical concerns due to radiation exposure. Thus, the contribution of magnetic resonance imaging (MRI) to age estimation of living individuals is a subject of ongoing research. In the current study, MRIs of shoulder were retrospectively collected from a modern Chinese Han population and data from 835 individuals (599 males and 236 females) in the age group 12 to 30 years were obtained. A staging technique based on (Schmidt et al. Int J Legal Med 121(4):321-324, 2007) and (Kellinghaus et al. Int J Legal Med 124(4):321–325, 2010) was used and all images were evaluated with T1-wieghted turbo spin echo (T1-TSE) sequence and T2-weighed fat suppression (T2-FS) sequence. One-sided images were assessed because data from both sides were considered coincidental, as no significant differences were found (P > 0.05). Two MRI sequences were evaluated separately and subsequently compared. Regression models and supportive vector classification (SVC) models were established accordingly. The intraobserver and interobserver agreement levels were good. Compared with T1-TSE sequence, the R2 values of T2-FS sequence were generally higher, while the mean absolute deviation (MAD) values were slightly lower. For T2-FS sequence, the MAD value was 1.49 years in males and 2.19 years in females. With two MRI sequences incorporated, the SVC model obtained with 85.7% correctly classified minors and 96.2% correctly classified adults in males, while 83.3% and 98.0% respectively in females. In conclusion, T2-FS sequence may slightly outperform the T1-TSE sequence in shoulder MRI analysis for age estimation, while shoulder MRIs could be a reliable prediction indicator for the 18-year threshold and two MRI sequences incorporated are encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Part NG (2011) Radiation protection and safety of radiation sources International Basic Safety Standards.

  2. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460. https://doi.org/10.1007/s00414-008-0254-2

    Article  CAS  PubMed  Google Scholar 

  3. Schmeling A, Geserick G, Reisinger W, Olze A (2007) Age estimation. Forensic Sci Int 165(2–3):178–181. https://doi.org/10.1016/j.forsciint.2006.05.016

    Article  CAS  PubMed  Google Scholar 

  4. Widek T, Genet P, Merkens H, Boldt J, Petrovic A, Vallis J, Scheurer E (2019) Dental age estimation: the chronology of mineralization and eruption of male third molars with 3T MRI. Forensic Sci Int 297:228–235. https://doi.org/10.1016/j.forsciint.2019.02.019

    Article  PubMed  Google Scholar 

  5. Baumann P, Widek T, Merkens H, Boldt J, Petrovic A, Urschler M, Kirnbauer B, Jakse N, Scheurer E (2015) Dental age estimation of living persons: Comparison of MRI with OPG. Forensic Sci Int 253:76–80. https://doi.org/10.1016/j.forsciint.2015.06.001

    Article  PubMed  Google Scholar 

  6. Guo Y, Olze A, Ottow C, Schmidt S, Schulz R, Heindel W, Pfeiffer H, Vieth V, Schmeling A (2015) Dental age estimation in living individuals using 3.0 T MRI of lower third molars. Int J Legal Med 129(6):1265–1270. https://doi.org/10.1007/s00414-015-1238-7

    Article  PubMed  Google Scholar 

  7. Dvorak J, George J, Junge A, Hodler J (2007) Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Brit J Sport Med 41(1):45–52. https://doi.org/10.1136/bjsm.2006.031021

    Article  Google Scholar 

  8. George J, Nagendran J, Azmi K (2012) Comparison study of growth plate fusion using MRI versus plain radiographs as used in age determination for exclusion of overaged football players. Br J Sport Med 46(4):273–278. https://doi.org/10.1136/bjsm.2010.074948

    Article  Google Scholar 

  9. Hojreh A, Gamper J, Schmook MT, Weber M, Prayer D, Herold CJ, Noebauer-Huhmann IM (2018) Hand MRI and the Greulich-Pyle atlas in skeletal age estimation in adolescents. Skeletal Radiol 47(7):963–971. https://doi.org/10.1007/s00256-017-2867-3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Timme M, Ottow C, Schulz R, Pfeiffer H, Heindel W, Vieth V, Schmeling A, Schmidt S (2017) Magnetic resonance imaging of the distal radial epiphysis: a new criterion of maturity for determining whether the age of 18 has been completed? Int J Legal Med 131(2):579–584. https://doi.org/10.1007/s00414-016-1502-5

    Article  CAS  PubMed  Google Scholar 

  11. Er A, Bozdag M, Basa CD, Kacmaz IE, Ekizoglu O (2020) Estimating forensic age via magnetic resonance imaging of the distal radial epiphysis. Int J Legal Med 134(1):375–380. https://doi.org/10.1007/s00414-019-02189-9

    Article  PubMed  Google Scholar 

  12. Štern D, Payer C, Urschler M (2019) Automated age estimation from MRI volumes of the hand. Med Image Anal 58:101538. https://doi.org/10.1016/j.media.2019.101538

    Article  PubMed  Google Scholar 

  13. Hillewig E, De Tobel J, Cuche O, Vandemaele P, Piette M, Verstraete K (2011) Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach. Eur Radiol 21(4):757–767. https://doi.org/10.1007/s00330-010-1978-1

    Article  PubMed  Google Scholar 

  14. De Tobel J, Hillewig E, van Wijk M, Fieuws S, de Haas MB, van Rijn RR, Thevissen PW, Verstraete KL (2020) Staging clavicular development on MRI: pitfalls and suggestions for age estimation. J Magn Reson Imaging 51(2):377–388. https://doi.org/10.1002/jmri.26889

    Article  PubMed  Google Scholar 

  15. Auf der Mauer M, Säring D, Stanczus B, Herrmann J, Groth M, Jopp-van Well E (2019) A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. Int J Legal Med 133(1):205–215. https://doi.org/10.1007/s00414-018-1826-4

    Article  PubMed  Google Scholar 

  16. Dedouit F, Auriol J, Rousseau H, Rougé D, Crubézy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217(1–3):232.e231-237. https://doi.org/10.1016/j.forsciint.2011.11.013

    Article  Google Scholar 

  17. Fan F, Zhang K, Peng Z, Cui JH, Hu N, Deng ZH (2016) Forensic age estimation of living persons from the knee: comparison of MRI with radiographs. Forensic Sci Int 268:145–150. https://doi.org/10.1016/j.forsciint.2016.10.002

    Article  PubMed  Google Scholar 

  18. Dallora AL, Berglund JS, Brogren M, Kvist O, Diaz Ruiz S, Dübbel A, Anderberg P (2019) Age assessment of youth and young adults using magnetic resonance imaging of the knee: a deep learning approach. JMIR medical informatics 7(4):e16291. https://doi.org/10.2196/16291

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mauer MA, Well EJ, Herrmann J, Groth M, Morlock MM, Maas R, Säring D (2020) Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med.https://doi.org/10.1007/s00414-020-02465-z

  20. Saint-Martin P, Rérolle C, Dedouit F, Bouilleau L, Rousseau H, Rougé D, Telmon N (2013) Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127(5):1023–1030. https://doi.org/10.1007/s00414-013-0844-5

    Article  PubMed  Google Scholar 

  21. Saint-Martin P, Rérolle C, Dedouit F, Rousseau H, Rougé D, Telmon N (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis–a preliminary study focusing on the 18-year threshold. Int J Legal Med 128(4):675–683. https://doi.org/10.1007/s00414-014-0987-z

    Article  PubMed  Google Scholar 

  22. Ekizoglu O, Hocaoglu E, Can IO, Inci E, Aksoy S, Bilgili MG (2015) Magnetic resonance imaging of distal tibia and calcaneus for forensic age estimation in living individuals. Int J Legal Med 129(4):825–831. https://doi.org/10.1007/s00414-015-1187-1

    Article  PubMed  Google Scholar 

  23. Lu T, Shi L, Zhan MJ, Fan F, Peng Z, Zhang K, Deng ZH (2020) Age estimation based on magnetic resonance imaging of the ankle joint in a modern Chinese Han population. Int J Legal Med 134(5):1843–1852. https://doi.org/10.1007/s00414-020-02364-3

    Article  PubMed  Google Scholar 

  24. Wittschieber D, Vieth V, Timme M, Dvorak J, Schmeling A (2014) Magnetic resonance imaging of the iliac crest: age estimation in under-20 soccer players. Forensic Sci Med Pat 10(2):198–202. https://doi.org/10.1007/s12024-014-9548-5

    Article  Google Scholar 

  25. Ekizoglu O, Inci E, Ors S, Hocaoglu E, Can IO, Basa CD, Kacmaz IE, Kranioti EF (2019) Forensic age diagnostics by magnetic resonance imaging of the proximal humeral epiphysis. Int J Legal Med 133(1):249–256. https://doi.org/10.1007/s00414-018-1952-z

    Article  PubMed  Google Scholar 

  26. Ekizoglu O, Inci E, Ors S, Kacmaz IE, Basa CD, Can IO, Kranioti EF (2019) Applicability of T1-weighted MRI in the assessment of forensic age based on the epiphyseal closure of the humeral head. Int J Legal Med 133(1):241–248. https://doi.org/10.1007/s00414-018-1868-7

    Article  PubMed  Google Scholar 

  27. Altinsoy HB, Gurses MS, Bogan M, Unlu NE (2020) Applicability of 3.0 T MRI images in the estimation of full age based on shoulder joint ossification: Single-centre study. Legal Med (Tokyo, Japan) 47:101767. https://doi.org/10.1016/j.legalmed.2020.101767

    Article  Google Scholar 

  28. Martínez Vera NP, Höller J, Widek T, Neumayer B, Ehammer T, Urschler M (2017) Forensic age estimation by morphometric analysis of the manubrium from 3D MR images. Forensic Sci Int 277:21–29. https://doi.org/10.1016/j.forsciint.2017.05.005

    Article  PubMed  Google Scholar 

  29. Vieth V, Schulz R, Heindel W, Pfeiffer H, Buerke B, Schmeling A, Ottow C (2018) Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages. Eur Radiol 28(8):3255–3262. https://doi.org/10.1007/s00330-017-5281-2

    Article  PubMed  Google Scholar 

  30. De Tobel J, Bauwens J, Parmentier GIL, Franco A, Pauwels NS, Verstraete KL, Thevissen PW (2020) Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol 50(12):1691–1708. https://doi.org/10.1007/s00247-020-04709-x

    Article  PubMed  Google Scholar 

  31. Schmidt S, Mühler M, Schmeling A, Reisinger W, Schulz R (2007) Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 121(4):321–324. https://doi.org/10.1007/s00414-007-0160-z

    Article  PubMed  Google Scholar 

  32. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124(4):321–325. https://doi.org/10.1007/s00414-010-0448-2

    Article  PubMed  Google Scholar 

  33. Cardoso HF (2008) Age estimation of adolescent and young adult male and female skeletons II, epiphyseal union at the upper limb and scapular girdle in a modern Portuguese skeletal sample. Am J Phys Anthropol 137(1):97–105. https://doi.org/10.1002/ajpa.20850

    Article  PubMed  Google Scholar 

  34. Coqueugniot H, Weaver TD (2007) Brief communication: infracranial maturation in the skeletal collection from Coimbra, Portugal: new aging standards for epiphyseal union. Am J Phys Anthropol 134(3):424–437. https://doi.org/10.1002/ajpa.20683

    Article  PubMed  Google Scholar 

  35. Schaefer MC (2008) A summary of epiphyseal union timings in Bosnian males. Int J Osteoarchaeol 18(5):536–545. https://doi.org/10.1002/oa.959

    Article  Google Scholar 

  36. Schaefer MC, Black SM (2005) Comparison of ages of epiphyseal union in North American and Bosnian skeletal material. J Forensic Sci 50(4):777–784

    Article  Google Scholar 

  37. Schaefer M, Aben G, Vogelsberg C (2015) A demonstration of appearance and union times of three shoulder ossification centers in adolescent and post-adolescent children. J Forensic Radiol Imaging 3(1):49–56. https://doi.org/10.1016/j.jofri.2014.12.006

    Article  Google Scholar 

  38. Tirpude DB, Surwade DV, Murkey DP, Wankhede DP, Meena DS (2014) Age determination from epiphyseal union of bones at shoulder joint in girls of central India. J Forensic Med Sic Law 23(1)

  39. Terada Y, Kono S, Tamada D, Uchiumi T, Kose K, Miyagi R, Yamabe E, Yoshioka H (2013) Skeletal age assessment in children using an open compact MRI system. Magn Reson Med 69(6):1697–1702. https://doi.org/10.1002/mrm.24439

    Article  PubMed  Google Scholar 

  40. De Tobel J, Fieuws S, Hillewig E, Phlypo I, van Wijk M, de Haas MB, Politis C, Verstraete KL, Thevissen PW (2020) Multi-factorial age estimation: a Bayesian approach combining dental and skeletal magnetic resonance imaging. Forensic Sci Int 306:110054. https://doi.org/10.1016/j.forsciint.2019.110054

    Article  PubMed  Google Scholar 

  41. Boldsen JL, Milner GR, Konigsberg LW, Wood JW, Hoppa RD, Vaupel JW (2002) Transition analysis: a new method for estimating age from skeletons. Paleodemography: Age distributions from skeletal samples. Cambridge University Press, Cambridge, pp 73–106

    Chapter  Google Scholar 

  42. De Tobel J, Hillewig E, de Haas MB, Van Eeckhout B, Fieuws S, Thevissen PW, Verstraete KL (2019) Forensic age estimation based on T1 SE and VIBE wrist MRI: do a one-fits-all staging technique and age estimation model apply? Euro Radiol 29(6):2924–2935. https://doi.org/10.1007/s00330-018-5944-7

    Article  Google Scholar 

  43. Fieuws S, Willems G, Larsen-Tangmose S, Lynnerup N, Boldsen J, Thevissen P (2016) Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure. Int J Legal Med 130(2):489–499. https://doi.org/10.1007/s00414-015-1200-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to acknowledge the excellent support by our radiologists. In addition, we thank our colleagues for their valuable insights and expertise that contributed to our research and professional assistance in the writing of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81971801 and No. 81373252).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Fan or Zhen-hua Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Qiu, Lr., Ren, B. et al. Forensic age estimation based on magnetic resonance imaging of the proximal humeral epiphysis in Chinese living individuals. Int J Legal Med 135, 2437–2446 (2021). https://doi.org/10.1007/s00414-021-02653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02653-5

Keywords

Navigation