Skip to main content
Log in

Identification of antemortem and postmortem fractures in a complex environment by FTIR spectroscopy based on a rabbit tibial fracture self-control model

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The identification of antemortem and postmortem fractures is a critical and challenging task for forensic researchers. Based on our preliminary studies, we explored whether the combination of Fourier transform infrared spectroscopy (FTIR) and chemometrics can identify antemortem and postmortem fractures in complex environments. The impacts of the four environments on the bone spectrum were analyzed by principal component analysis (PCA). It was found that the bone degradation rate in the submerged and ground surface (GS) environments was higher than that in the buried and constant temperature and moisture (CTM) environments. Additionally, the bone degradation rate in buried environment higher than that in the CTM environment. The average spectrum, PCA and partial least squares discriminant analysis (PLS-DA) results all revealed that there were significant differences between the antemortem fracture and the remaining three groups in a complex environment. Compared with the antemortem fracture, the antemortem fracture control (AFC) and postmortem fracture control (PFC) tended to be more similar to the postmortem fracture. According to the loading plot, amide I and amide II were the main components that contributed to the identification of the antemortem fracture, AFC, postmortem fracture, and PFC. Finally, we established a differential model for the antemortem and postmortem fractures (an accuracy of 96.9%), and a differentiation model for the antemortem fracture, AFC, postmortem fracture, and PFC (an accuracy of 87.5%). In conclusion, FTIR spectroscopy is a reliable tool for the identification of antemortem and postmortem fractures in complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Obertová Z, Leipner A, Messina C et al (2019) Postmortem imaging of perimortem skeletal trauma. Forensic Sci Int 302:109921. https://doi.org/10.1016/j.forsciint.2019.109921

    Article  PubMed  Google Scholar 

  2. Fleming-Farrell D, Michailidis K, Karantanas A, Roberts N, Kranioti E (2013) Virtual assessment of perimortem and postmortem blunt force cranial trauma. Forensic Sci Int 229. https://doi.org/10.1016/j.forsciint.2013.03.032

  3. Moraitis K, Spiliopoulou C (2006) Identification and differential diagnosis of perimortem blunt force trauma in tubular long bones. Forensic Sci Med Pathol 2:221–229. https://doi.org/10.1385/FSMP:2:4:221

    Article  PubMed  Google Scholar 

  4. Wang Q, Li W, Liu R et al (2019) Human and non-human bone identification using FTIR spectroscopy. Int J Legal Med 133:269–276. https://doi.org/10.1007/s00414-018-1822-8

    Article  PubMed  Google Scholar 

  5. Verdonck M, Denayer A, Delvaux B et al (2016) Characterization of human breast cancer tissues by infrared imaging. Analyst 141:606–619. https://doi.org/10.1039/c5an01512j

    Article  CAS  PubMed  Google Scholar 

  6. Lilo T, Morais C, Ashton K et al (2020) Spectrochemical differentiation of meningioma tumours based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Anal Bioanal Chem 412:1077–1086. https://doi.org/10.1007/s00216-019-02332-w

    Article  CAS  PubMed  Google Scholar 

  7. Yu K, Wang G, Cai W et al (2020) Identification of antemortem, perimortem and postmortem fractures by FTIR spectroscopy based on a rabbit tibial fracture model. Spectrochim Acta A Mol Biomol Spectrosc 239:118535. https://doi.org/10.1016/j.saa.2020.118535

    Article  CAS  PubMed  Google Scholar 

  8. Kemp W (2016) Postmortem change and its effect on evaluation of fractures. Acad Forensic Pathol 6: 28–44. https://doi.org/10.23907/2016.004

  9. Coelho L, Cardoso HFV (2013) Timing of blunt force injuries in long bones: the effects of the environment, PMI length and human surrogate model. Forensic Sci Int 233:230–237. https://doi.org/10.1016/j.forsciint.2013.09.022

    Article  PubMed  Google Scholar 

  10. Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24. https://doi.org/10.1007/s00114-006-0159-1

    Article  CAS  PubMed  Google Scholar 

  11. Zhang K, Wang Q, Liu R et al (2020) Evaluating the effects of causes of death on postmortem interval estimation by ATR-FTIR spectroscopy. Int J Legal Med 134:565–574. https://doi.org/10.1007/s00414-019-02042-z

    Article  PubMed  Google Scholar 

  12. Cappella A, Amadasi A, Castoldi E, Mazzarelli D, Gaudio D, Cattaneo C (2014) The difficult task of assessing perimortem and postmortem fractures on the skeleton: a blind text on 210 fractures of known origin. J Forensic Sci 59:1598–1601. https://doi.org/10.1111/1556-4029.12539

    Article  PubMed  Google Scholar 

  13. Wieberg DA, Wescott DJ (2008) Estimating the timing of long bone fractures: correlation between the postmortem interval, bone moisture content, and blunt force trauma fracture characteristics*. J Forensic Sci 53:1028–1034. https://doi.org/10.1111/j.1556-4029.2008.00801.x

    Article  PubMed  Google Scholar 

  14. Wilson AS, Janaway RC, Holland AD et al (2007) Modelling the buried human body environment in upland climes using three contrasting field sites. Forensic Sci Int 169:6–18. https://doi.org/10.1016/j.forsciint.2006.07.023

    Article  PubMed  Google Scholar 

  15. Dent B, Forbes S, Stuart B (2004) Review of human decomposition processes in soil. Environ Geol 45:576–585. https://doi.org/10.1007/s00254-003-0913-z

    Article  CAS  Google Scholar 

  16. Karr LP, Outram AK (2012) Tracking changes in bone fracture morphology over time: environment, taphonomy, and the archaeological record. J Archaeol Sci 39:555–559. https://doi.org/10.1016/j.jas.2011.10.016

    Article  Google Scholar 

  17. Delannoy Y, Colard T, Le Garff E et al (2016) Effects of the environment on bone mass: a human taphonomic study. Leg Med (Tokyo) 20:61–67. https://doi.org/10.1016/j.legalmed.2016.04.006

    Article  CAS  Google Scholar 

  18. Forensic Science InternationalJans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31:87–95. https://doi.org/10.1016/j.jas.2003.07.007

    Article  Google Scholar 

  19. Hackett CJ (1981) Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law 21:243–265. https://doi.org/10.1177/002580248102100403

    Article  CAS  PubMed  Google Scholar 

  20. Habtom H, Demanèche S, Dawson L et al (2017) Soil characterisation by bacterial community analysis for forensic applications: a quantitative comparison of environmental technologies. Forensic Sci Int Genet 26:21–29. https://doi.org/10.1016/j.fsigen.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  21. Ashhurst DE, Hogg J, Perren SM (1982) A method for making reproducible experimental fractures of the rabbit tibia. Injury 14:236–242. https://doi.org/10.1016/0020-1383(82)90134-6

    Article  CAS  PubMed  Google Scholar 

  22. Müller CW, Pfeifer R, Meier K et al (2015) A novel shape memory plate osteosynthesis for noninvasive modulation of fixation stiffness in a rabbit tibia osteotomy model. Biomed Res Int 2015:652940. https://doi.org/10.1155/2015/652940

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tassani S, Demenegas F, Matsopoulos GK (2011) Local analysis of trabecular bone fracture. Annu Int Conf IEEE Eng Med Biol Soc 2011:7454–7457. https://doi.org/10.1109/iembs.2011.6091748

    Article  PubMed  Google Scholar 

  24. Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777

    Article  CAS  Google Scholar 

  25. Thielemans A, Massart DL (1985) The use of principal component analysis as a display method in the interpretation of analytical chemical, biochemical, environmental, and epidemiological data. Chimia 39.

  26. Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: Linear models. PLS-DA Anal Methods 5:3790–3798. https://doi.org/10.1039/c3ay40582f

    Article  CAS  Google Scholar 

  27. Westerhuis J, Hoefsloot H, Smit S et al (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89. https://doi.org/10.1007/s11306-007-0099-6

    Article  CAS  Google Scholar 

  28. Kourkoumelis N, Zhang X, Lin Z, Wang J (2019) Fourier transform infrared spectroscopy of bone tissue: bone quality assessment in preclinical and clinical applications of osteoporosis and fragility fracture. Clin Rev Bone Miner Metabol 17:24–39. https://doi.org/10.1007/s12018-018-9255-y

    Article  CAS  Google Scholar 

  29. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1996) Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 45:371–386

    CAS  PubMed  Google Scholar 

  30. Zhai M, Lu Y, Fu J et al (2019) Fourier transform infrared spectroscopy research on subchondral bone in osteoarthritis. Spectrochim Acta A Mol Biomol Spectrosc 218:243–247. https://doi.org/10.1016/j.saa.2019.04.020

    Article  CAS  PubMed  Google Scholar 

  31. Bozkurt O, Bilgin M, Evis Z, Pleshko N, Severcan F (2016) Early alterations in bone characteristics of type I Diabetic rat femur: a Fourier transform infrared (FT-IR) imaging study. Appl Spectrosc 70:2005–2015. https://doi.org/10.1177/0003702816671059

    Article  CAS  PubMed  Google Scholar 

  32. Paschalis E, Mendelsohn R, Boskey A (2011) Infrared assessment of bone quality: a review. Clin Orthop Relat Res 469:2170–2178. https://doi.org/10.1007/s11999-010-1751-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Benetti C, Kazarain S, Alves MAV, Blay A, Correa L, Zezell D (2014) Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic analysis of regenerated bone. Progress in Biomedical Optics and Imaging - Proceedings of SPIE 8926https://doi.org/10.1117/12.2039915

  34. Ross AH, Cunningham SL (2011) Time-since-death and bone weathering in a tropical environment. Forensic Sci Int 204:126–133. https://doi.org/10.1016/j.forsciint.2010.05.018

    Article  PubMed  Google Scholar 

  35. Rodriguez WC (1997) Decomposition of buried and submerged bodies. Forensic Taphonomy: The Postmortem Fate of Human Remains 459–467.

  36. Jaggers KA, Rogers TL (2009) The effects of soil environment on postmortem interval: a macroscopic analysis. J Forensic Sci 54:1217–1222. https://doi.org/10.1111/j.1556-4029.2009.01160.x

    Article  PubMed  Google Scholar 

  37. Patonai Z, Maasz G, Avar P et al (2013) Novel dating method to distinguish between forensic and archeological human skeletal remains by bone mineralization indexes. Int J Legal Med 127:529–533. https://doi.org/10.1007/s00414-012-0785-4

    Article  PubMed  Google Scholar 

  38. Nagy G, Lorand T, Patonai Z et al (2008) Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy. Forensic Sci Int 175:55–60. https://doi.org/10.1016/j.forsciint.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  39. Förster Y, Schmidt JR, Wissenbach DK et al (2016) Microdialysis sampling from wound fluids enables quantitative assessment of cytokines, proteins, and metabolites reveals bone defect-specific molecular profiles. PLoS ONE 11:e0159580–e0159580. https://doi.org/10.1371/journal.pone.0159580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cappella A, Bertoglio B, Castoldi E et al (2015) The taphonomy of blood components in decomposing bone and its relevance to physical anthropology. Am J Phys Anthropol 158:636–645. https://doi.org/10.1002/ajpa.22830

    Article  PubMed  Google Scholar 

  41. Zweig MH, Campbell G (1993) ROC plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:551–577

    Google Scholar 

Download references

Funding

This study was funded by the Council of National Natural Science Foundation of China (No. 81730056) and Key Research and Development Program of Shaanxi (No. 2020SF-133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinru Sun or Zhenyuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The protocol was approved by the Ethical Committee of Xi’an Jiaotong University.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Wu, H., Shen, C. et al. Identification of antemortem and postmortem fractures in a complex environment by FTIR spectroscopy based on a rabbit tibial fracture self-control model. Int J Legal Med 135, 2385–2394 (2021). https://doi.org/10.1007/s00414-021-02633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02633-9

Keywords

Navigation