Skip to main content
Log in

Developmental validation of the STRscan-17LC kit: a 6 Dye STR kit enhanced stability and ability to detect degraded samples

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Genotyping of short tandem repeat (STR) markers is the basic method of forensic science. Enhanced technologies are needed to meet the requirements of databasing and casework samples. The STRscan-17LC kit is a 6 Dye STR kit which amplifies 16 STR loci: D3S1358, TPOX, D16S539, vWA, D2S1338, CSF1PO, D19S433, D7S820, FGA, D8S1179, D5S818, D13S317, D18S51, TH01, D12S391, and D21S11 and the sex-determinant locus amelogenin. This kit is designed for better tolerance to PCR inhibitors and analysis of mildly degraded samples with all fragments smaller than 330 bases. In this study, the STRscan-17LC kit is validated according to the SWGDAM (Scientific Working Group on DNA Analysis Methods) guidelines, including PCR-based studies, sensitivity, precision and accuracy, inhibitors, species specificity, DNA mixture studies, population, and concordance studies. The validation results suggest that the STRscan-17LC kit is a useful tool for forensic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Holmes AS, Roman MG, Hughes-Stamm S (2018) In-field collection and preservation of decomposing human tissues to facilitate rapid purification and STR typing. Forensic Sci Int Genet 36:124–129. https://doi.org/10.1016/j.fsigen.2018.06.015

    Article  CAS  PubMed  Google Scholar 

  2. Tagliaro F, Pascali J, Fanigliulo A, Bortolotti F (2010) Recent advances in the application of CE to forensic sciences: a update over years 2007-2009. Electrophoresis 31(1):251–259. https://doi.org/10.1002/elps.200900482

    Article  CAS  PubMed  Google Scholar 

  3. McNally L, Shaler RC, Baird M, Balazs I, De Forest P, Kobilinsky L (1989) Evaluation of deoxyribonucleic acid (DNA) isolated from human bloodstains exposed to ultraviolet light, heat, humidity, and soil contamination. J Forensic Sci 34(5):1059–1069

    CAS  PubMed  Google Scholar 

  4. Tvedebrink T, Eriksen PS, Mogensen HS, Morling N (2009) Estimating the probability of allelic drop-out of STR alleles in forensic genetics. Forensic Sci Int Genet 3(4):222–226. https://doi.org/10.1016/j.fsigen.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  5. Siriboonpiputtana T, Rinthachai T, Shotivaranon J, Peonim V, Rerkamnuaychoke B (2018) Forensic genetic analysis of bone remain samples. Forensic Sci Int 284:167–175. https://doi.org/10.1016/j.forsciint.2017.12.045

    Article  CAS  PubMed  Google Scholar 

  6. Ip SC, Lin SW, Li C, Lai KM (2014) Forensic DNA typing strategy of degraded DNA on discarded cigarette ends using the AmpFℓSTR® Identifiler®, AmpFℓSTR® Identifiler® Plus and MiniFiler PCR amplification kits. Sci Justice 54(4):311–315. https://doi.org/10.1016/j.scijus.2014.04.007

    Article  PubMed  Google Scholar 

  7. van Oorschot RAH, Szkuta B, Meakin GE, Kokshoorn B, Goray M (2019) DNA transfer in forensic science: a review. Forensic Sci Int Genet 38:140–166. https://doi.org/10.1016/j.fsigen.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  8. Alaeddini R (2012) Forensic implications of PCR inhibition--a review. Forensic Sci Int Genet 6(3):297–305. https://doi.org/10.1016/j.fsigen.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  9. Scientific Working Group on DNA Analysis Methods (SWGDAM), Validation Guidelines for DNA Analysis Methods, 2013. Available from: http://swgdam.ord/SWGDAMValidationGuidelinesApprovedDec2012.pdf

  10. Sharma V, van der Plaat DA, Liu Y, Wurmbach E (2020) Analyzing degraded DNA and challenging samples using the ForenSeq DNA Signature Prep kit. Sci Justice 60(3):243–252. https://doi.org/10.1016/j.scijus.2019.11.004

    Article  PubMed  Google Scholar 

  11. Promega (1999) Powerstats version 1.2. tools for analysis of population statistics. https://www.promega.com.cn/products/genetic-identity/

  12. Wang DY, Chang CW, Lagace RE, Calandro LM, Hennessy LK (2012) Developmental validation of the AmpFℓSTR® Identifiler® Plus PCR Amplification Kit: an established multiplex assay with improved performance. J Forensic Sci 57(2):453–465. https://doi.org/10.1111/j.1556-4029.2011.01963.x

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Luo H, Song F, Zhang L, Deng C, Yu Z, Gao T, Liao M, Hou Y (2017) Validation of the microreader 23sp ID system: a new STR 23-plex system for forensic application. Forensic Sci Int Genet 27:67–73. https://doi.org/10.1016/j.fsigen.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  14. Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20(2):211–215. https://doi.org/10.1093/nar/20.2.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K (1994) Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci 39(2):362–372

    Article  CAS  Google Scholar 

  16. de Franchis R, Cross NC, Foulkes NS, Cox TM (1988) A potent inhibitor of Taq polymerase copurifies with human genomic DNA. Nucleic Acids Res 16(21):10355. https://doi.org/10.1093/nar/16.21.10355

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aznar JM, Celorrio D, Odriozola A, Kohnemann S, Bravo ML, Builes JJ, Pfeiffer H, Herrera RJ, de Pancorbo MM (2014) I-DNASE21 system: development and SWGDAM validation of a new STR 21-plex reaction. Forensic Sci Int Genet 8(1):10–19. https://doi.org/10.1016/j.fsigen.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Guo L, Jin H, Li Z, Bai R, Shi M, Ma S (2017) Developmental validation of a 6-dye typing system with 27 loci and application in Han population of China. Sci Rep 7(1):4706. https://doi.org/10.1038/s41598-017-04548-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ludeman MJ, Zhong C, Mulero JJ, Lagace RE, Hennessy LK, Short ML, Wang DY (2018) Developmental validation of GlobalFiler PCR amplification kit: a 6-dye multiplex assay designed for amplification of casework samples. Int J Legal Med 132(6):1555–1573. https://doi.org/10.1007/s00414-018-1817-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (NSFC, No. 81871533), the Natural Science Foundation of Hunan Province (No. 2020JJ4779), and China Postdoctoral Science Foundation (No. 2020M682591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lagabaiyila Zha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. S1

Electropherograms of control DNA 2800 M amplified with different PCR reaction volumes (5 μL, 10 μL and 20 μL). (JPG 634 kb)

Fig. S2

Effect of 1x, 0.75x, 0.5x buffer consentrations and 1x, 0.75x, 0.5x Primer Mix consentrations on the STRscan-17LC kit. (JPG 490 kb)

Fig. S3

Effect of various cycle numbers (24, 26, 28, 30 and 32) on the STRscan-17LC kit. (JPG 370 kb)

Fig. S4

Effect of various annealing temperature (55, 57, 59, 61 and 63 °C) on the STRscan-17LC kit. (JPG 406 kb)

Fig. S5

Effects of shortening the final extension time after normal thermal cycling for 1 ng 2800 M. The red box shows a minus-A shoulder peaks at the CSF1PO locus. (JPG 242 kb)

Fig. S6

Representative electropherograms from species specificity studies. (JPG 1008 kb)

Fig. S7

Electropherograms from sensitivity study samples were tested with a serial dilution of following template amounts: 1 ng, 500 pg, 250 pg, 125 pg, 62.5 pg, and 31.25 pg. (JPG 1191 kb)

Fig. S8

Precision across 32 injections of the STRscan-17LC kit allelic ladder mix performed on 3130xl Genetic Analyzer. (JPG 333 kb)

Fig. S9

Male/female mixtures (9948 and 9947A human genomic DNA) were prepared and tested with the ratio of 1:0, 0:1, 1:1, 1:4, 1:9, and 1:19. (JPG 428 kb)

Fig. S10

Hematin were tested with the STRscan-17LC kit. When added nothing, full profiles were obtained. The experiments were carried out with hematin of 0uM, 50uM, 100uM, 150uMand 200uM, respectively. With the increase of hematin concentration, the dropout of alleles increased.When the concentration of hematin was raised to 200uM, complete dropout occurred. (JPG 364 kb)

Fig. S11

Humic acid were tested with the STRscan-17LC kit. When added nothing, full profiles were obtained. The experiments were carried out with humic acid of 0 ng/ul, 100 ng/ul, 200 ng/ul, 300 ng/ul, 400 ng/ul and 500 ng/ul, respectively. With the increase of humic acid concentration, the dropout of alleles increased. When the concentration of humic acid was raised to 500 ng/ul, complete dropout occurred. (JPG 437 kb)

ESM 12

(XLSX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., He, W., Jin, C. et al. Developmental validation of the STRscan-17LC kit: a 6 Dye STR kit enhanced stability and ability to detect degraded samples. Int J Legal Med 135, 431–440 (2021). https://doi.org/10.1007/s00414-020-02490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02490-y

Keywords

Navigation