Skip to main content
Log in

Ancestry-informative marker (AIM) SNP panel for the Malay population

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Ancestry-informative markers (AIMs) can be used to infer the ancestry of an individual to minimize the inaccuracy of self-reported ethnicity in biomedical research. In this study, we describe three methods for selecting AIM SNPs for the Malay population (Malay AIM panel) using different approaches based on pairwise FST, informativeness for assignment (In), and PCA-correlated SNPs (PCAIMs). These Malay AIM panels were extracted from genotype data stored in SNP arrays hosted by the Malaysian node of the Human Variome Project (MyHVP) and the Singapore Genome Variation Project (SGVP). In particular, genotype data from a total of 165 Malay individuals were analyzed, comprising data on 117 individual genotypes from the Affymetrix SNP-6 SNP array platform and data on 48 individual genotypes from the OMNI 2.5 Illumina SNP array platform. The HapMap phase 3 database (1397 individuals from 11 populations) was used as a reference for comparison with the Malay genotype data. The accuracy of each resulting Malay AIM panel was evaluated using a machine learning “ancestry-predictive model” constructed by using WEKA, a comprehensive machine learning platform written in Java. A total of 1250 SNPs were finally selected, which successfully identified Malay individuals from other world populations with an accuracy of 90%, but the accuracy decreased to 80% using 157 SNPs according to the pairwise FST method, while a panel of 200 SNPs selected using In and PCAIMs could be used to identify Malay individuals with an accuracy of approximately 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brooks LD (2003) SNPs: why do we care? In: Kwok P-Y (ed) Single nucleotide polymorphisms methods and protocols. Humana Press Inc., Totowa, pp 1–14

    Google Scholar 

  2. Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10(9):639–650

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Syvänen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    PubMed  Google Scholar 

  4. Phillips C, Fernandez-Formoso L, Gelabert-Besada M, Garcia-Magarinos M, Santos C, Fondevila M et al (2013) Development of a novel forensic STR multiplex for ancestry analysis and extended identity testing. Electrophoresis 34(8):1151–1162

    CAS  PubMed  Google Scholar 

  5. Branco CC, Palla R, Lino S, Pacheco PR, Cabral R, De Fez L, Peixoto BR, Mota-Vieira L (2006) Assessment of Azorean ancestry by Alu insertion polymorphisms. Am J Hum Biol 18(2):223–226

    PubMed  Google Scholar 

  6. Inácio A, Costa HA, Vieira da Silva C, Ribeiro T, Porto MJ, Santos JC et al (2017) Study of InDel genetic markers with forensic and ancestry informative interest in PALOP’s immigrant populations in Lisboa. Int J Legal Med 131(3):657–660

    PubMed  Google Scholar 

  7. Hwa H-L, Lin C-P, Huang T-Y, Kuo P-H, Hsieh W-H, Lin C-Y et al (2017) A panel of 130 autosomal single-nucleotide polymorphisms for ancestry assignment in five Asian populations and in Caucasians. Forensic Sci Med Pathol 13(2):177–187

    CAS  PubMed  Google Scholar 

  8. Glover KA, Hansen MM, Lien S, Als TD, Høyheim B, Skaala Ø (2010) A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment. BMC Genet 11(2). https://doi.org/10.1186/1471-2156-11-2

  9. Kidd K.K., , Speed W.C., Pakstis A.J., Furtado M.R., Fang R., Madbouly A. et al. Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci Int Genet, 2014; 10: 23-32.

    CAS  PubMed  Google Scholar 

  10. Tian C, Gregersen PK, Seldin MF (2008) Accounting for ancestry: population substructure and genome-wide association studies. Hum Mol Genet 17(R2):R143–R150

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfaff CL, Barnholtz-Sloan J, Wagner JK, Long JC (2004) Information on ancestry from genetic markers. Genet Epidemiol 26(4):305–315

    PubMed  Google Scholar 

  12. Paschou P, Ziv E, Burchard EG, Choudhry S, Rodriguez-Cintron W, Mahoney MW, Drineas P (2007) PCA-correlated SNPs for structure identification in worldwide human populations. PLoS Genet 3(9):1672–1686

    CAS  PubMed  Google Scholar 

  13. Paschou P, Lewis J, Javed A, Drineas P (2010) Ancestry informative markers for fine-scale individual assignment to worldwide populations. J Med Genet 47(12):835–847

    PubMed  Google Scholar 

  14. Huckins LM, Boraska V, Franklin CS, Floyd JAB, Southam L, GCAN, WTCCC3, Sullivan PF et al (2014) Using ancestry-informative markers to identify fine structure across 15 populations of European origin. Eur J Hum Genet 22(10):1190–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gettings KB, Lai R, Johnson JL, Peck MA, Hart JA, Gordish-Dressman H et al (2014) A 50-SNP assay for biogeographic ancestry and phenotype prediction in the U.S. population. Forensic Sci Int Genet 8(1):101–108

    CAS  PubMed  Google Scholar 

  16. Bansal V, Libiger O (2015) Fast individual ancestry inference from DNA sequence data leveraging allele frequencies for multiple populations. BMC Bioinformatics 16:4

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rogalla U, Rychlicka E, Derenko MV, Malyarchuk BA, Grzybowski T (2015) Simple and cost-effective 14-loci SNP assay designed for differentiation of European, East Asian and African samples. Forensic Sci Int Genet 14:42–49

    CAS  PubMed  Google Scholar 

  18. Galanter JM, Fernandez-Lopez JC, Gignoux CR, Barnholtz-Sloan J, Fernandez-Rozadilla C, Via M et al (2012) Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas. PLoS Genet:8(3). https://doi.org/10.1371/journal.pgen.1002554

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73(6):1402–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng X, Chakraborty R, King JL, LaRue B, Moura-Neto RS, Budowle B (2016) Selection of highly informative SNP markers for population affiliation of major US populations. Int J Legal Med 130(2):341–352

    PubMed  Google Scholar 

  21. Lins TC, Vieira RG, Abreu BS, Grattapaglia D, Pereira RW (2010) Genetic composition of Brazilian population samples based on a set of twenty eight ancestry informative SNPs. Am J Hum Biol 22(2):187–192

    PubMed  Google Scholar 

  22. Kersbergen P, Duijn KV, Kloosterman AD, Dunnen JTD, Kayser M, Knijff PD (2009) Developing a set of ancestry-sensitive DNA markers reflecting continental origins of humans. BMC Genet 10:69

    PubMed  PubMed Central  Google Scholar 

  23. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19(9):1655–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet:2(12). https://doi.org/10.1371/journal.pgen.0020190

    PubMed  PubMed Central  Google Scholar 

  26. Intarapanich A, Shaw PJ, Assawamakin A, Wangkumhang P, Ngamphiw C, Chaichoompu K et al (2009) Iterative pruning PCA improves resolution of highly structured populations. BMC Bioinformatics 10:382

    PubMed  PubMed Central  Google Scholar 

  27. Sankararaman S, Sridhar S, Kimmel G, Halperin E (2008) Estimating local ancestry in admixed populations. Am J Hum Genet 82(2):290–303

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N, Ruczinski I et al (2009) Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet:5(6). https://doi.org/10.1371/journal.pgen.1000519

    PubMed  PubMed Central  Google Scholar 

  29. Tang H, Peng J, Wang P, Risch NJ (2005) Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol 28(4):289–301

    PubMed  Google Scholar 

  30. Bouaziz M, Paccard C, Guedj M, Ambroise C (2012) SHIPS: spectral hierarchical clustering for the inference of population structure in genetic studies. PLoS One 7(10). https://doi.org/10.1371/journal.pone.0045685

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA, Oksenberg JR et al (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74(5):979–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Omar AH The Malays in Australia language, culture, religion. Dewan Bahasa dan Pustaka (DBP). DBP, Kuala Lumpur

  33. Hoh B-P, Deng L, Julia-Ashazila MJ, Zuraihan Z, Nur-Hasnah M, Nur-Shafawati AR et al (2015) Fine-scale population structure of Malays in Peninsular Malaysia and Singapore and implications for association studies. Hum Genomics 9:16

    PubMed  PubMed Central  Google Scholar 

  34. Crawfurd J On the Malayan and Polynesian languages and races. J Ethnol Soc Lond 1:1848, 330–1374 http://www.jstor.org/stable/3014092

    Google Scholar 

  35. Fix AG (1995) Malayan paleosociology: implications for patterns of genetic variation amongst the Orang Asli. Am Anthropol 97(2):313–323

    Google Scholar 

  36. Lim LS, Ang KC, Mahani MC, Shahrom AW, Md-Zain BM (2010) Mitochondrial DNA polymorphism and phylogenetic relationships of Proto Malays in Peninsular Malaysia. J Biol Sci 10(2):71–83

    CAS  Google Scholar 

  37. Hatin WI, Nur-Shafawati AR, Zahri M-K, Xu S, Jin L, Tan S-G et al (2011) Population genetic structure of peninsular Malaysia Malay sub-ethnic groups. PLoS One 6(4). https://doi.org/10.1371/journal.pone.0018312

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Embong AM, Jusoh JS, Hussein J, Mohammad R (2016) Tracing the Malays in the Malay land. Procedia Soc Behav Sci 219:235–240

    Google Scholar 

  39. Edinur HA, Zafarina Z, Spinola H, Nurhaslindawaty AR, Panneerchelvam S, Norazmi M-N (2009) HLA polymorphism in six Malay subethnic groups in Malaysia. Hum Immunol 70(7):518–526

    CAS  PubMed  Google Scholar 

  40. Deng L, Hoh B-P, Lu D, Saw W-Y, Ong RT-H, Kasturiratne A et al (2015) Dissecting the genetic structure and admixture of four geographical Malay populations. Sci Rep 5, Article number :14375

  41. Halim-Fikri H, Etemad A, Abdul Latif AZ, Merican AF, Baig AA, Annuar AA et al (2015) The first Malay database toward the ethnic-specific target molecular variation. BMC Res Notes 8:176

    PubMed  PubMed Central  Google Scholar 

  42. Teo YY, Sim X, Ong RTH, Tan AKS, Chen J, Tantoso E et al (2009) Singapore Genome Variation Project: a haplotype map of three South-east Asian populations. Genome Res 19(11):2154–2162

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The international HapMap project web site. Genome Res 15:1592–1593

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT (2010) Data quality control in genetic case-control association studies. Nat Protoc 5(9):1564–1573

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    CAS  PubMed  Google Scholar 

  47. Limpiti T, Intarapanich A, Assawamakin A, Shaw PJ, Wangkumhang P, Piriyapongsa J et al (2011) Study of large and highly stratified population datasets by combining iterative pruning principal component analysis and structure. BMC Bioinformatics 12:255

    PubMed  PubMed Central  Google Scholar 

  48. Witten IH, Frank E, Trigg L, Hall M, Holmes G, Cunningham SJ (1999) WEKA: practical machine learning tools and techniques with Java implementations. (Working paper 99/11). University of Waikato, Department of Computer Science, Hamilton

    Google Scholar 

  49. Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2003) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18

    Google Scholar 

  50. Bhargavi P, Jyothi S (2009) Applying naive bayes data mining technique for classification of agricultural land soils. Int J Comput Sci Netw Secur 9:117–122

    Google Scholar 

  51. Bouckaert RR, Frank E, Hall M, Kirkby R, Reutemann P, Seewald A, Scuse D (2015) WEKA manual for version 3-6-13. University of Waikato, Department of Computer Science, Hamilton

    Google Scholar 

  52. Hatin WI, Nur-Shafawati AR, Etemad A, Jin W, Qin P, Xu S et al (2014) A genome wide pattern of population structure and admixture in peninsular Malaysia Malays. HUGO J 8:5. https://doi.org/10.1186/s11568-014-0005-z

    Article  PubMed  PubMed Central  Google Scholar 

  53. Deng L, Hoh BP, Lu D, Fu R, Phipps ME, Li S et al (2014) The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia. Hum Genet 133(9):1169–1185

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all participants who contributed samples for this study. All authors contributed to aspects of the conception or design of the experimental work, analysis of data, and review and approval the final content of the manuscript.

Funding

This work was supported by a Universiti Sains Malaysia Apex Grant: 1002/PPSP/910343and an NTU Grant (Muhammed Ariff Research Grant (MAS): 304.PPSP.6150148.N119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Alwi Zilfalil.

Ethics declarations

The humane and ethical research standards recommended by Universiti Sains Malaysia were followed in this study. All participants signed the written informed consents before sample collection. This study was approved by Universiti Sains Malaysia ethics committee.

Conflict of Interest

The authors declared that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplement Fig. 1.

Method overview: We propose AIM selection methods (See Method Section for details) including quality control (QC), population clustering using ipPCA, and three approaches for selecting AIMs. In particular, we apply standard QC steps to the Malaysian population and 11 world populations from HapMap and population data from three Singaporean ethnic groups. We perform population clustering using ipPCA and obtain 11 subpopulations (SP1-SP11) as a result. We apply the AIM selection methods among the 11 subpopulations, including pairwise Fst (we selected the top 5 and top 50 SNPs from each SP), informativeness for assignment (200 SNPs) and PCAIMs (200 SNPs). Finally, we assess each model’s performance via ROC analysis using WEKA. (PNG 325 kb)

High resolution image (TIF 835 kb)

Supplement Fig. 2

The performance of the SNPs selected based on In in classifying Malay individuals into their correct group. (PNG 324 kb)

High resolution image (TIF 1079 kb)

Supplement Fig. 3

The performance of the 100 SNPs selected based on In as shown by ADMIXTURE analysis. (PNG 20934 kb)

High resolution image (TIF 3278 kb)

Supplement Fig. 4

The performance of the 100 SNPs selected based on PCAIMs (k=3) as shown by ADMIXTURE analysis. (PNG 26171 kb)

High resolution images (TIF 3912 kb)

Supplement Fig. 5

Comparison of the performance of the PCAIMs and In method. (PNG 877 kb)

High resolution image (TIF 1184 kb)

Supplement data 6

Comparison of AIM model based on WEKA analysis. (XLSX 46 kb)

Supplement Fig. 7

Genetic structure of the Malay population using a set of 555 AIMs. (PNG 4704 kb)

High resolution image (TIF 10999 kb)

Supplement Fig. 8

Classification assessment via ROC analysis for 200 SNPs selected using PCAIMs (k=3). (PNG 4637 kb)

High resolution image (TIFF 14768 kb)

Supplement Fig. 9

Classification assessment via ROC analysis for 1250 SNPs selected using Fst. (PNG 4501 kb)

High resolution image (TIFF 14768 kb)

Supplement Fig. 10

Classification assessment via ROC analysis for 200 SNPs selected using In. (PNG 4791 kb)

High resolution image (TIFF 14768 kb)

Supplement Fig. 11

Classification assessment via ROC analysis for 157 SNPs selected using Fst. (PNG 4526 kb)

High resolution image (TIFF 14768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahya, P., Sulong, S., Harun, A. et al. Ancestry-informative marker (AIM) SNP panel for the Malay population. Int J Legal Med 134, 123–134 (2020). https://doi.org/10.1007/s00414-019-02184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02184-0

Keywords

Navigation