Skip to main content

Advertisement

Log in

Age estimation by assessment of pulp chamber volume: a Bayesian network for the evaluation of dental evidence

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Purpose

The present study aimed to investigate the performance of a Bayesian method in the evaluation of dental age-related evidence collected by means of a geometrical approximation procedure of the pulp chamber volume. Measurement of this volume was based on three-dimensional cone beam computed tomography images.

Methods

The Bayesian method was applied by means of a probabilistic graphical model, namely a Bayesian network. Performance of that method was investigated in terms of accuracy and bias of the decisional outcomes. Influence of an informed elicitation of the prior belief of chronological age was also studied by means of a sensitivity analysis.

Results

Outcomes in terms of accuracy were adequate with standard requirements for forensic adult age estimation. Findings also indicated that the Bayesian method does not show a particular tendency towards under- or overestimation of the age variable. Outcomes of the sensitivity analysis showed that results on estimation are improved with a ration elicitation of the prior probabilities of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We consider here the Bayesian (subjective) definition of probability, which states that the latter is a measure of the degree of a personal belief [37]. Such vision of probability offers a logical and coherent framework to handle uncertainty in forensic science, as widely discussed, for example, by Taroni et al. [38] or Biedermann [39].

References

  1. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193(1-3):1–13. https://doi.org/10.1016/j.forsciint.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  2. Schmeling A, Black S (2010) An introduction to the history of age estimation in the living. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practioner’s guide. John Wiley & Sons, Hoboken, pp 1–18. https://doi.org/10.1002/9780470669785.ch1

    Chapter  Google Scholar 

  3. Schmeling A (2013) Forensic age estimation. In: Siegel JA, Saukko PJ (eds) Encyclopedia of forensic sciences, vol 3. Academic Press, Waltham, pp 133–138. https://doi.org/10.1016/B978-0-12-382165-2.00173-2

    Chapter  Google Scholar 

  4. Aggrawal A, Setia P, Gupta A, Busuttil A (2010) Age evaluation after growth cessation. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practioner’s guide. John Wiley & Sons, Hoboken, pp 236–266. https://doi.org/10.1002/9780470669785.ch12

    Chapter  Google Scholar 

  5. Pinchi V, Pradella F, Buti J, Baldinotti C, Focardi M, Norelli G-A (2015) A new age estimation procedure based on the 3D CBCT study of the pulp cavity and hard tissues of the teeth for forensic purposes: a pilot study. J Forensic Legal Med 36:150–157. https://doi.org/10.1016/j.jflm.2015.09.015

    Article  Google Scholar 

  6. Morse DR (1991) Age-related changes of the dental pulp complex and their relationship to systemic aging. Oral Surg Oral Med Oral Pathol 72(6):721–745. https://doi.org/10.1016/0030-4220(91)90019-9

    Article  CAS  PubMed  Google Scholar 

  7. Gustafson G (1950) Age determination on teeth. J Am Dent Assoc 41(1):45–54. 10.14219/jada.archive.1950.0132

    Article  CAS  PubMed  Google Scholar 

  8. Bang G, Ramm E (1970) Determination of age in humans from root dentin transparency. Acta Odontol Scand 28(1):3–35. https://doi.org/10.3109/00016357009033130

    Article  CAS  PubMed  Google Scholar 

  9. Johanson G (1971) Age determinations from human teeth. Odontol Revy 22:1–126

  10. Pinchi V, Forestieri AL, Calvitti M (2007) Thickness of the dental (radicular) cementum: a parameter for estimating age. J Forensic Odontostomatol 25(1):1–6

    CAS  PubMed  Google Scholar 

  11. Kvaal SI, Kolltveit KM, Thomsen IO, Solheim T (1995) Age estimation of adults from dental radiographs. Forensic Sci Int 74(3):175–185. https://doi.org/10.1016/0379-0738(95)01760-G

    Article  CAS  PubMed  Google Scholar 

  12. Cameriere R, Ferrante L, Cingolani M (2004) Precision and reliability of pulp/tooth area ratio (RA) of second molar as indicator of adult age. J Forensic Sci 49:1319–1323

    PubMed  Google Scholar 

  13. Vandevoort FM, Bergmans L, Van Cleynenbreugel J, Bielen DJ, Lambrechts P, Wevers M, Peirs A, Willem G (2004) Age calculation using X-ray microfocus computed tomographical scanning of teeth: a pilot study. J Forensic Sci 49(4):787–790

    Article  PubMed  Google Scholar 

  14. Bosmans N, Ann P, Aly M, Willems G (2005) The application of Kvaal’s dental age calculation technique on panoramic dental radiographs. Forensic Sci Int 153(2-3):208–212. https://doi.org/10.1016/j.forsciint.2004.08.017

    Article  PubMed  Google Scholar 

  15. Yang F, Jacobs R, Willems G (2006) Dental age estimation through volume matching of teeth imaged by cone-beam CT. Forensic Sci Int 159(Supplement):S78–S83

    Article  PubMed  Google Scholar 

  16. Someda H, Saka H, Matsunaga S, Ide Y, Nakahara K, Hirata S, Hashimoto M (2009) Age estimation based on three-dimensional measurement of mandibular central incisors in Japanese. Forensic Sci Int 185(1-3):110–114. https://doi.org/10.1016/j.forsciint.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  17. Pinchi V, Norelli G-A, Pradella F, Vitale G, Rugo D, Nieri M (2012) Comparison of the applicability of four odontological methods for age estimation of the 14 years legal threshold in a sample of Italian adolescents. J Forensic Odontostomatol 30(2):17–25

    PubMed  PubMed Central  Google Scholar 

  18. Willems G, Moulin-Romsee C, Solheim T (2002) Non-destructive dental-age calculation methods in adults: intra- and inter-observer effects. Forensic Sci Int 126(3):221–226. https://doi.org/10.1016/S0379-0738(02)00081-6

    Article  PubMed  Google Scholar 

  19. Soomer H, Ranta H, Lincoln MJ, Penttilä A, Leibur E (2003) Reliability and validity of eight dental age estimation methods for adults. J Forensic Sci 48(1):149–152

    Article  PubMed  Google Scholar 

  20. Meinl A, Tangl S, Pernicka E, Fenes C, Watzek G (2007) On the applicability of secondary dentin formation to radiological age estimation in young adults. J Forensic Sci 52(2):438–441. https://doi.org/10.1111/j.1556-4029.2006.00377.x

    Article  PubMed  Google Scholar 

  21. Aboshi H, Takahashi T, Komuro T (2010) Age estimation using microfocus X-ray computed tomography of lower premolars. Forensic Sci Int 200(1-3):35–40. https://doi.org/10.1016/j.forsciint.2010.03.024

    Article  CAS  PubMed  Google Scholar 

  22. Agematsu H, Someda H, Hashimoto M, Matsunaga S, Abe S, Kim H-J, Koyama T, Naito H, Ishida R, Ide Y (2010) Three-dimensional observation of decrease in pulp cavity volume using micro-CT: age-related change. Bull Tokyo Dent Coll 51(1):1–6. https://doi.org/10.2209/tdcpublication.51.1

    Article  PubMed  Google Scholar 

  23. Star H, Thevissen PW, Jacobs R, Fieuws S, Solheim T, Willems G (2011) Human dental age estimation by calculation of pulp–tooth volume ratios yielded on clinically acquired cone beam computed tomography images of monoradicular teeth. J Forensic Sci 56:S77–S82. https://doi.org/10.1111/j.1556-4029.2010.01633.x

    Article  PubMed  Google Scholar 

  24. Tardivo D, Sastre J, Ruquet M, Thollon L, Adalian P, Leonetti G, Foti B (2011) Three-dimensional modeling of the various volumes of canines to determine age and sex: a preliminary study. J Forensic Sci 56(3):766–770. https://doi.org/10.1111/j.1556-4029.2011.01720.x

    Article  PubMed  Google Scholar 

  25. Tardivo D, Sastre J, Catherine J-H, Leonetti G, Adalian P, Foti B (2014) Age determination of adult individuals by three-dimensional modelling of canines. Int J Legal Med 128(1):161–169. https://doi.org/10.1007/s00414-013-0863-2

    Article  PubMed  Google Scholar 

  26. De Angelis D, Gaudio D, Guercini N, Cipriani F, Gibelli D, Caputi S, Cattaneo C (2015) Age estimation from canine volumes. Radiol Med doi: https://doi.org/10.1007/s11547-015-0521-5, 120, 8, 731, 736. Springer Milan

  27. Ge Z-p, Ma R-h, Li G, Zhang J-z, Ma X-c (2015) Age estimation based on pulp chamber volume of first molars from cone-beam computed tomography images. Forensic Sci Int 253:133 e131–133.e137

    Article  Google Scholar 

  28. Porto LVMG, Celestino da Silva Neto J, Anjos Pontual AD, Catunda RQ (2015) Evaluation of volumetric changes of teeth in a Brazilian population by using cone beam computed tomography. J Forensic Leg Med 36:4–9

    Article  PubMed  Google Scholar 

  29. Z-p G, Yang P, Li G, Zhang J-z, Ma X-c (2016) Age estimation based on pulp cavity/chamber volume of 13 types of tooth from cone beam computed tomography images. Int J Legal Med 130:1159–1167

    Article  Google Scholar 

  30. Lucy D, Aykroyd RG, Pollard AM, Solheim T (1996) A Bayesian approach to adult human age estimation from dental observations by Johanson’s age changes. J Forensic Sci 41(2):189–194

    Article  CAS  PubMed  Google Scholar 

  31. Aykroyd RG, Lucy D, Pollard AM, Solheim T (1997) Regression analysis in adult age estimation. Am J Phys Anthropol 104(2):259–265. https://doi.org/10.1002/(SICI)1096-8644(199710)104:2<259::AID-AJPA11>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  32. Cameriere R, Pacifici A, Pacifici L, Polimeni A, Federici F, Cingolani M, Ferrante L (2016) Age estimation in children by measurement of open apices in teeth with Bayesian calibration approach. Forensic Sci Int 258:50–54. https://doi.org/10.1016/j.forsciint.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  33. Lucy D (2010) The presentation of results and statistics for legal purposes. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practioner’s guide. John Wiley & Sons, Hoboken, pp 267–283. https://doi.org/10.1002/9780470669785.ch13

    Chapter  Google Scholar 

  34. Sironi E, Gallidabino M, Weyermann C, Taroni F (2016) Probabilistic graphical models to deal with age estimation of living persons. Int J Legal Med 130(2):475–488. https://doi.org/10.1007/s00414-015-1173-7

    Article  PubMed  Google Scholar 

  35. Solheim T (1993) A new method for dental age estimation in adults. Forensic Sci Int 59(2):137–147. https://doi.org/10.1016/0379-0738(93)90152-Z

    Article  CAS  PubMed  Google Scholar 

  36. Solheim T (1992) Amount of secondary dentin as an indicator of age. Scand J Dent Res 100(4):193–199

    CAS  PubMed  Google Scholar 

  37. Lindley DV (2006) Understanding uncertainty. John Wiley & Sons, Hoboken. https://doi.org/10.1002/0470055480

    Book  Google Scholar 

  38. Taroni F, Aitken CGG, Garbolino P (2001) De Finetti's subjectivism, the assessment of probabilities and the evaluation of evidence: a commentary for forensic scientists. Sci Justice 41(3):145–150. https://doi.org/10.1016/S1355-0306(01)71879-5

    Article  Google Scholar 

  39. Biedermann A (2015) The role of the subjectivist position in the probabilization of forensic science. Journal of Forensic Science and Medicine 1:140–148

    Article  Google Scholar 

  40. Taroni F, Biedermann A (2014) Probability and inference in forensic science. In: Bruinsma G, Weisburd D (eds) Encyclopedia of criminology and criminal justice. Springer Science & Business Media, New York, pp 3947–3957. https://doi.org/10.1007/978-1-4614-5690-2_146

    Chapter  Google Scholar 

  41. Thevissen PW, Fieuws S, Willems G (2010) Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? Int J Legal Med 124(1):35–42. https://doi.org/10.1007/s00414-009-0329-8

    Article  CAS  PubMed  Google Scholar 

  42. Ferrante L, Skrami E, Gesuita R, Cameriere R (2015) Bayesian calibration for forensic age estimation. Stat Med 30:1779–1790

    Article  Google Scholar 

  43. Fieuws S, Willems G, Larsen-Tangmose S, Lynnerup N, Boldsen J, Thevissen P (2015) Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure. Int J Legal Med 130(2):489–499. https://doi.org/10.1007/s00414-015-1200-8

    Article  PubMed  Google Scholar 

  44. Tangmose S, Thevissen P, Lynnerup N, Willems G, Boldsen J (2015) Age estimation in the living: transition analysis on developing third molars. Forensic Sci Int 257:512e511–512e517

    Article  Google Scholar 

  45. Gallidabino M, Weyermann C, Romolo F, Taroni F (2013) Estimating the time since discharge of spent cartridges: a logical approach for interpreting the evidence. Forensic Sci Int 53:41–48

    Google Scholar 

  46. Taroni F, Biedermann A (2013) Bayesian networks. In: Siegel JA, Saukko PJ (eds) Encyclopedia of forensic sciences, vol 1. Academic Press, Waltham, pp 351–356

    Chapter  Google Scholar 

  47. Taroni F, Biedermann A, Bozza S, Garbolino P, Aitken C (2014) Bayesian networks for probabilistic inference and decision analysis in forensic science, 2nd edn. John Wiley & Sons, Chichester

    Google Scholar 

  48. Pourret O, Naïm P, Marcot B (2008) Bayesian networks: a practical guide to applications. John Wiley & Sons, Chichester. https://doi.org/10.1002/9780470994559

    Book  Google Scholar 

  49. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Wien

    Google Scholar 

  50. Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for running WinBUGS from R. J Stat Softw 12:1–16

    Article  Google Scholar 

  51. Kruschke JK, Aguinis H, Joo H (2012) The time has come: Bayesian methods for data analysis in the organizational sciences. Organ Res Methods 15(4):722–752. https://doi.org/10.1177/1094428112457829

    Article  Google Scholar 

  52. Scheuer JL, Black S (2000) Developmental juvenile osteology. Academic Press, London

    Google Scholar 

  53. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  54. Cameriere R, De Luca S, Alemán I, Ferrante L, Cingolani M (2012) Age estimation by pulp/tooth ratio in lower premolars by orthopantomography. Forensic Sci Int 214(1-3):105–112. https://doi.org/10.1016/j.forsciint.2011.07.028

    Article  PubMed  Google Scholar 

  55. Cameriere R, Cunha E, Wasterlain SN, De Luca S, Sassaroli E, Pagliara F, Nuzzolese E, Cingolani M, Ferrante L (2013) Age estimation by pulp/tooth ratio in lateral and central incisors by peri-apical X-ray. J Forensic Legal Med 20(5):530–536. https://doi.org/10.1016/j.jflm.2013.02.012

    Article  CAS  Google Scholar 

  56. Jagannathan N, Neelakantan P, Thiruvengadam C, Ramani P, Premkumar P, Natesan A, Herald JS, Luder HU (2011) Age estimation in an Indian population using pulp/tooth volume ratio of mandibular canines obtained from cone beam computed tomography. J Forensic Odontostomatol 29(1):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cameriere R, Cunha E, Sassaroli E, Nuzzolese E, Ferrante L (2009) Age estimation by pulp/tooth area ration in canines. Study of Portuguese sample to test Cameriere’s method. Forensic Sci Int 193(1-3):128.e1–128.e6. https://doi.org/10.1016/j.forsciint.2009.09.011

    Article  CAS  Google Scholar 

  58. Zaher JF, Fawzy IA, Habib SR, Ali MM (2011) Age estimation from pulp/tooth area ratio in maxillary incisors among Egyptians using dental radiographic images. Forensic and Legal Med 18:62–65

    Article  Google Scholar 

  59. Skilling J (1985) Prior probabilities. Synthese 63(1):1–34. https://doi.org/10.1007/BF00485953

    Article  Google Scholar 

  60. Taroni F, Bozza S, Biedermann A, Garbolino P, Aitken C (2010) Data analysis in forensic science: a Bayesian decision perspective. John Wiley & Sons, Chichester. https://doi.org/10.1002/9780470665084

    Book  Google Scholar 

  61. Aitken C, Roberts P, Jackson G (2010) Fundamentals of probability and statistical evidence in criminal proceedings.. Practitioner Guide no 1, vol 1. Royal Statistical Society, Avaiable on: http://www.rss.org.uk/Images/PDF/influencing-change/rss-fundamentals-probability-statistical-evidence.pdf, 01.02.2017

  62. Howson C (2002) Bayesianism in statistics. In: Swinburne R (ed) Bayes’s theorem. Proceedings of the British Academy. Oxford University Press, Oxford, pp 39–69

    Google Scholar 

  63. Bolstad WM (ed) (2007) Introduction to Bayesian statistics, 2nd edn. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9780470181188

    Book  Google Scholar 

  64. Sironi E, Pinchi V, Taroni F (2015) Probabilistic age classification with Bayesian networks: a study on the ossification status of the medial clavicular epiphysis. Forensic Sci Int 258:81–87. https://doi.org/10.1016/j.forsciint.2015.11.010

    Article  PubMed  Google Scholar 

  65. Berger CEH, Buckleton JS, Champod C, Evett IW, Jackson G (2011) Evidence evaluation: a response to the court of appeal judgment in R v T. Sci Justice 51(2):43–49. https://doi.org/10.1016/j.scijus.2011.03.005

    Article  PubMed  Google Scholar 

  66. European Network of Forensic Scientific Institutes (ENFSI) (2015) ENFSI guideline for evaluative reporting in forensic science: strengthening the evaluation of forensic results across Europe

  67. Evett IW (2015) The logical foundations of forensic science: towards reliable knowledge. Phil Trans R Soc B 370:1–10

    Article  Google Scholar 

  68. Solheim T, Sundnes PK (1980) Dental age estimation of Norwegian adults—a comparison of different methods. Forensic Sci Int 16(1):7–17. https://doi.org/10.1016/0379-0738(80)90174-7

    Article  CAS  PubMed  Google Scholar 

  69. Solheim T, Vonen A (2006) Dental age estimation, quality assurance and age estimation of asylum seekers in Norway. Forensic Sci Int 159S:S56–S60

    Article  Google Scholar 

  70. Taylor J, Blenkin M (2010) Age evaluation and odontology in the living. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practioner’s guide. John Wiley & Sons, Hoboken, pp 176–201. https://doi.org/10.1002/9780470669785.ch10

    Chapter  Google Scholar 

  71. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (eds) (2014) Bayesian data analysis, 3rd edn. Chapman & Hall/CRC, London

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Rachel Irlam (King’s College London, UK) for proof-reading the document as well as Lorenzo Gaborini (University of Lausanne, Switzerland) for its valuable contribution in the R Code redaction and all users who tested it. Many acknowledgements are also addressed to the anonymous reviewers for their valuable comments on the manuscript.

Funding

This work has been kindly supported by the Swiss National Science Foundation (grant no. P2LAP1_164912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Sironi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 62 kb)

Addendum

Addendum

From a general point of view, the Bayesian theorem applied to the assessment of continuous age-related characteristics for age estimation purposes take the following form:

$$ f\left(\left.a\right|z,s,\boldsymbol{t},\boldsymbol{g},\boldsymbol{v}\right)=\frac{f\left(\left.z\right|s,a,\boldsymbol{t},\boldsymbol{g},\boldsymbol{v}\right)\times f(a)}{\int_Af\left(\left.z\right|s,a,\boldsymbol{t},\boldsymbol{g},\boldsymbol{v}\right)\times f(a) da} $$
(5)

where a is the age of the examined individual, s his/her sex and z the value of the considered age-related characteristics (e.g., the Z-ratio or its logarithm, lnZ) computed during the individual’s examination. t, g and v are vectors, which refer respectively to the age, sex and measurements of the considered age-related characteristics of all the subjects in the reference sample (background data). Thus, the probability distribution associated with the likelihood f(z| s, a, t, g, v) models the probability of observing a specific value for z on the examined individual, given his/her age and sex and the background data. Eq. (3) in Section 3 is essentially a notation-simplified form of (5), where variables concerning background data are intentionally omitted from notation.

In a parametric framework, the characteristics of the probability distribution for f(z| s, a, t, g, v) can be defined based on a set of parameters θ, which can be estimated from the characteristics of the reference sample (i.e., the t, g, v vectors). The likelihood function in Eq. (5) is therefore a posterior predictive distribution, which can be further defined as follows [71]:

$$ f\left(\left.z\right|s,a,\boldsymbol{t},\boldsymbol{g},\boldsymbol{v}\right)={\int}_{\varTheta }f\left(\left.z\right|a,s,\boldsymbol{\theta} \right)\times \pi \left(\left.\boldsymbol{\theta} \right|\boldsymbol{t},\boldsymbol{g},\boldsymbol{v}\right)d\boldsymbol{\theta} $$
(6)

where

$$ \pi \left(\left.\boldsymbol{\theta} \right|\boldsymbol{t},\boldsymbol{g},\boldsymbol{v}\right)=\frac{f\left(\left.\boldsymbol{v}\right|\boldsymbol{t},\boldsymbol{g},\boldsymbol{\theta} \right)\times \pi \left(\boldsymbol{\theta} \right)}{\int_{\varTheta }f\left(\left.\boldsymbol{v}\right|\boldsymbol{t},\boldsymbol{g},\boldsymbol{\theta} \right)\times \pi \left(\boldsymbol{\theta} \right)d\boldsymbol{\theta}} $$
(7)

is the posterior probability distribution of the parameters, also obtained through the application of the Bayesian theorem. π(θ) is the prior probability distribution of the parameters and f(v| t, g, θ) models, in probabilistic terms, the relationship between the considered age-related characteristics of the subjects in the reference sample with their chronological age and sexes. This relationship is defined as a function of the parameters θ.

In this study, the likelihood function has been modelled by means of a Normal distribution, with parameters μ and σ. The former describes the relationship between lnZ and the age and sex of an individual. Since this relationship has been found to be linear [5], a multinomial linear regression model can be used for quantifying the value of lnZ. Formally:

$$ {\mu}_{a,s}={\beta}_{\mathsf{0}}+{\beta}_{\mathsf{1}}\times a+{\beta}_{\mathsf{2}}\times s, $$
(8)

where β 0 is the intercept parameter, and β 1 and β 2 are the slope parameters related to chronological age and sex. The regression analysis involves uncertainty, which has to be integrated in the model. It can therefore be assumed that the observed lnZ value results from a combination of a systematic part and a random part that takes into account such uncertainty [45]. Formally:

$$ lnZ={\mu}_{a,s}+\varepsilon, $$
(9)

where the error term ε is assumed to be Normally distributed, i.e., ε~Ɲ(0, σ2). The variance term σ2 is assumed constant in the whole age range, since the logarithmic transformation reduces the heteroscedasticity of the data. Therefore, from Eq. (9) it can be inferred that lnZ~Ɲ(μ a, s, σ2). Furthermore, θ = {β 0, β 1, β 2, σ} and can be estimated from the reference sample by means of the Eq. (7) presented above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sironi, E., Taroni, F., Baldinotti, C. et al. Age estimation by assessment of pulp chamber volume: a Bayesian network for the evaluation of dental evidence. Int J Legal Med 132, 1125–1138 (2018). https://doi.org/10.1007/s00414-017-1733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1733-0

Keywords

Navigation