Skip to main content
Log in

Identification of rare variants of DSP gene in sudden unexplained nocturnal death syndrome in the southern Chinese Han population

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Sudden unexplained nocturnal death syndrome (SUNDS) is a perplexing disorder to both forensic pathologists and clinic physicians. Desmoplakin (DSP) gene was the first desmosomal gene linked to arrhythmogenic right ventricular cardiomyopathy (ARVC) which was associated with sudden death. To identify the genetic variants of the DSP gene in SUNDS in the southern Chinese Han population, we genetically screened the DSP gene in 40 sporadic SUNDS victims, 16 Brugada syndrome (BrS) patients, and 2 early repolarization syndrome (ERS) patients using next generation sequencing (NSG) and direct Sanger sequencing. A total of 10 genetic variants of the DSP gene were detected in 11 cases, comprised of two novel missense mutations (p.I125F and p.D521A) and eight previously reported rare variants. Of eight reported variants, two were previously considered pathogenic (p.Q90R and p.R2639Q), three were predicted in silico to be pathogenic (p.R315C, p.E1357D and p.D2579H), and the rest three were predicted to be benign (p.N1234S, p.R1308Q, and p.T2267S). This is the first report of DSP genetic screening in Chinese SUNDS and Brugada syndrome. Our results imply that DSP mutations contribute to the genetic cause of some SUNDS victims and maybe a new susceptible gene for Brugada syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Liu C, Zhao Q, Su T, Tang S, Lv G, Liu H et al (2013) Postmortem molecular analysis of KCNQ1, KCNH2, KCNE1 and KCNE2 genes in sudden unexplained nocturnal death syndrome in the Chinese Han population. Forensic Sci Int 231:82–87

    Article  CAS  PubMed  Google Scholar 

  2. Liu C, Tester DJ, Hou Y, Wang W, Lv G, Ackerman MJ et al (2014) Is sudden unexplained nocturnal death syndrome in Southern China a cardiac sodium channel dysfunction disorder? Forensic Sci Int 236:38–45

    Article  PubMed  Google Scholar 

  3. Huang L, Liu C, Tang S, Su T, Cheng J (2014) Postmortem genetic screening of SNPs in RyR2 gene in sudden unexplained nocturnal death syndrome in the Southern Chinese Han population. Forensic Sci Int 235:14–18

    Article  CAS  PubMed  Google Scholar 

  4. Elger BS, Michaud K, Fellmann F, Mangin P (2010) Sudden death: ethical and legal problems of post-mortem forensic genetic testing for hereditary cardiac diseases. Clin Genet 77:287–292

    Article  CAS  PubMed  Google Scholar 

  5. Sheikh F, Ross RS, Chen J (2009) Cell-cell connection to cardiac disease. Trends Cardiovasc Med 19:182–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V et al (2002) Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 71:1200–1206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. van der Zwaag PA, Jongbloed JD, van den Berg MP, van der Smagt JJ, Jongbloed R, Bikker H et al (2009) A genetic variants database for arrhythmogenic right ventricular dysplasia/cardiomyopathy. Hum Mutat 30:1278–1283

    Article  PubMed  Google Scholar 

  8. Zhang Q, Deng C, Rao F, Modi RM, Zhu J, Liu X et al (2013) Silencing of desmoplakin decreases connexin43/Nav1.5 expression and sodium current in HL1 cardiomyocytes. Mol Med Rep 8:780–786

    CAS  PubMed  Google Scholar 

  9. Cheng J, Makielski JC, Yuan P, Shi N, Zhou F, Ye B et al (2011) Sudden unexplained nocturnal death syndrome in Southern China: an epidemiological survey and SCN5A gene screening. Am J Forensic Med Pathol 32:359–363

    Article  PubMed Central  PubMed  Google Scholar 

  10. Illumina Protocol for Whole Genome Sequencing using SBS Technology (2006) BioTechniques protocol guide. Biotechniques, New York

    Google Scholar 

  11. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A et al (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 11:11.10.1–11.10.33

    Google Scholar 

  15. Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR et al (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10:294–300

    Article  CAS  PubMed  Google Scholar 

  16. Lapouge K, Fontao L, Champliaud MF, Jaunin F, Frias MA, Favre B et al (2006) New insights into the molecular basis of desmoplakin- and desmin-related cardiomyopathies. J Cell Sci 119:4974–4985

    Article  CAS  PubMed  Google Scholar 

  17. Delmar M, McKenna WJ (2010) The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res 107:700–714

    Article  CAS  PubMed  Google Scholar 

  18. Basso C, Bauce B, Corrado D, Thiene G (2012) Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol 9:223–233

    Article  CAS  Google Scholar 

  19. Yu CC, Yu CH, Hsueh CH, Yang CT, Juang JM, Hwang JJ et al (2008) Arrhythmogenic right ventricular dysplasia: clinical characteristics and identification of novel desmosome gene mutations. J Formos Med Assoc 107:548–558

    Article  CAS  PubMed  Google Scholar 

  20. Sato T, Nishio H, Suzuki K (2015) Identification of arrhythmogenic right ventricular cardiomyopathy-causing gene mutations in young sudden unexpected death autopsy cases. J Forensic Sci 60:457–461

    Article  CAS  PubMed  Google Scholar 

  21. Yang Z, Bowles NE, Scherer SE, Taylor MD, Kearney DL, Ge S et al (2006) Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res 99:646–655

    Article  CAS  PubMed  Google Scholar 

  22. Xu T, Yang Z, Vatta M, Rampazzo A, Beffagna G, Pilichou K et al (2010) Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol 55:587–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Cox MG, van der Zwaag PA, van der Werf C, van der Smagt JJ, Noorman M, Bhuiyan ZA et al (2011) Arrhythmogenic right ventricular dysplasia/cardiomyopathy: pathogenic desmosome mutations in index-patients predict outcome of family screening: Dutch arrhythmogenic right ventricular dysplasia/cardiomyopathy genotype-phenotype follow-up study. Circulation 123:2690–2700

    Article  PubMed  Google Scholar 

  24. Gomes J, Finlay M, Ahmed AK, Ciaccio EJ, Asimaki A, Saffitz JE et al (2012) Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin-A combined murine and human study. Eur Heart J 33:1942–1953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lyon RC, Mezzano V, Wright AT, Pfeiffer E, Chuang J, Banares K et al (2014) Connexin defects underlie arrhythmogenic right ventricular cardiomyopathy in a novel mouse model. Hum Mol Genet 23:1134–1150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J et al (2001) Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 88:333–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gutstein DE, Morley GE, Vaidya D, Liu F, Chen FL, Stuhlmann H et al (2001) Heterogeneous expression of gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation 104:1194–1199

    Article  CAS  PubMed  Google Scholar 

  28. Patel DM, Dubash AD, Kreitzer G, Green KJ (2014) Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. J Cell Biol 206:779–797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jansen JA, Noorman M, Musa H, Stein M, de Jong S, van der Nagel R et al (2012) Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm 9:600–607

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hertz CL, Christiansen SL, Ferrero-Miliani L, Dahl M, Weeke PE, LuCamp et al (2015) Next-generation sequencing of 100 candidate genes in young victims of suspected sudden cardiac death with structural abnormalities of the heart. Int J Legal Med. doi:10.1007/s00414-015-1261-8

    Google Scholar 

  31. Alcalde M, Campuzano O, Allegue C, Torres M, Arbelo E, Partemi S et al (2015) Sequenom MassARRAY approach in the arrhythmogenic right ventricular cardiomyopathy post-mortem setting: clinical and forensic implications. Int J Legal Med 129:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Quan, Jonathan C. Makielski or Jianding Cheng.

Ethics declarations

The project was approved for human research by the ethics committee of Sun Yat-sen University.

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

All participants gave informed consent.

Sources of funding

This work was supported by the Key Program (81430046), General Program (81172901) from National Natural Science Foundation of China (to JC), and the grants R56 HL71092 & R01 HL128076-01 from National Institutes of Health of United States of America (to JCM).

Additional information

Qianhao Zhao, Yili Chen, Longlun Peng, and Rui Gao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Chen, Y., Peng, L. et al. Identification of rare variants of DSP gene in sudden unexplained nocturnal death syndrome in the southern Chinese Han population. Int J Legal Med 130, 317–322 (2016). https://doi.org/10.1007/s00414-015-1275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1275-2

Keywords

Navigation