Skip to main content

Advertisement

Log in

Tumoural specimens for forensic purposes: comparison of genetic alterations in frozen and formalin-fixed paraffin-embedded tissues

  • ORIGINAL ARTICLE
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In certain circumstances, tumour tissue specimens are the only DNA resource available for forensic DNA analysis. However, cancer tissues can show microsatellite instability and loss of heterozygosity which, if concerning the short tandem repeats (STRs) used in the forensic field, can cause misinterpretation of the results. Moreover, though formalin-fixed paraffin-embedded tissues (FFPET) represent a large resource for these analyses, the quality of the DNA obtained from this kind of specimen can be an important limit. In this study, we evaluated the use of tumoural tissue as biological material for the determination of genetic profiles in the forensic field, highlighting which STR polymorphisms are more susceptible to tumour genetic alterations and which of the analysed tumours show a higher genetic variability. The analyses were conducted on samples of the same tissues conserved in different storage conditions, to compare genetic profiles obtained by frozen tissues and formalin-fixed paraffin-embedded tissues. The importance of this study is due to the large number of specimens analysed (122), the large number of polymorphisms analysed for each specimen (39), and the possibility to compare, many years after storage, the same tissue frozen and formalin-fixed paraffin-embedded. In the comparison between the genetic profiles of frozen tumour tissues and FFPET, the same genetic alterations have been reported in both kinds of specimens. However, FFPET showed new alterations. We conclude that the use of FFPET requires greater attention than frozen tissues in the results interpretation and great care in both pre-extraction and extraction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitaker JP, Clayton TM, Urquhart AJ et al (1995) Short tandem repeat typing of bodies from a mass disaster: high success rate and characteristic amplification patterns in highly degraded samples. Biotechniques 18:670–677

    PubMed  CAS  Google Scholar 

  2. Silva F, Gusmão L, Alves C et al (1997) Tetra- and pentanucleotide short tandem repeat instability in gastric cancer. Electrophoresis 18:1633–1636

    Article  PubMed  CAS  Google Scholar 

  3. Poetsch M, Petersmann A, Woenckhaus C et al (2004) Evaluation of allelic alterations in short tandem repeats in different kinds of solid tumors—possible pitfalls in forensic casework. Forensic Sci Int 145:1–6

    PubMed  CAS  Google Scholar 

  4. Aaltonen LA, Peltomäki P, Leach FS et al (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260:812–816

    Article  PubMed  CAS  Google Scholar 

  5. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    Article  PubMed  CAS  Google Scholar 

  6. Ionov Y, Peinado MA, Malkhosyan S et al (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    Article  PubMed  CAS  Google Scholar 

  7. Vauhkonen M, Vauhkonen H, Sajantila A et al (2005) Differences in genomic instability between intestinal- and diffuse-type gastric cancer. Gastric Cancer 8:238–244

    Article  PubMed  CAS  Google Scholar 

  8. Fishel R, Lescoe MK, Rao MR et al (1993) The human mutator gene homolog MSH2 and its association with hereditary non-polyposis colon cancer. Cell 75:1027–1038

    Article  PubMed  CAS  Google Scholar 

  9. Bronner CE, Baker SM, Morrison PT et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368:258–261

    Article  PubMed  CAS  Google Scholar 

  10. Vauhkonen H, Hedman M, Vauhkonen M et al (2004) Evaluation of gastrointestinal cancer tissues as a source of genetic information for forensic investigations by using STRs. Forensic Sci Int 139:159–167

    Article  PubMed  CAS  Google Scholar 

  11. Aviel-Ronen S, Qi Zhu C, Coe BP et al (2006) Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues. BMC Genomics 7:312

    Article  PubMed  Google Scholar 

  12. Gilbert MTP, Sanchez JJ, Haselkorn T et al (2007) Multiplex PCR with minisequencing as an effective higher throughput SNP typing method for formalin fixed tissue. Electrophoresis 28:2361–2367

    Article  PubMed  CAS  Google Scholar 

  13. Greer CE, Peterson SK, Kiviat NB et al (1991) PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time. Am J Clin Path 95:117–124

    PubMed  CAS  Google Scholar 

  14. Wang LT, Smith A, Iacopetta B, Wood DJ et al (1996) Nested PCR- SSCP assay for the detection of p53 mutations in paraffin wax embedded bone tumors: improvement of sensitivity and fidelity. J Clin Mol Pathol 49:M176–M178

    Article  CAS  Google Scholar 

  15. Miething F, Hering S, Hanschke B et al (2006) Effect of fixation to the degradation of nuclear and mitochondrial DNA in different tissues. J Histochem Cytochem 54:371–374

    Article  PubMed  CAS  Google Scholar 

  16. Hewitt S, Lewis F, Cao Y et al (2008) Tissue handling and specimen preparation in surgical pathology. Arch Pathol Lab Med 132:1929–1935

    PubMed  Google Scholar 

  17. Fracasso T, Heinrich M, Hohoff C et al (2009) Ultrasound-accelerated formalin fixation improves the preservation of nucleic acids extraction in histological sections. Int J Legal Med 123:521–525

    Article  PubMed  Google Scholar 

  18. Turrina S, Atzei R, Filippini G et al (2008) STR typing of archival Bouin’s fluid-fixed paraffin-embedded tissue using new sensitive redesigned primers for three STR loci (CSF1P0, D8S1179 and D13S317). J Forensic Leg Med 15:27–31

    Article  PubMed  Google Scholar 

  19. Farrugia A, Keyser C, Ludes B (2009) Efficiency evaluation of a DNA extraction and purification protocol on archival formalin-fixed and paraffin-embedded tissue. Forensic Sci Int 194:e25–e28

    Article  PubMed  Google Scholar 

  20. Coble MD, Butler JM (2005) Characterization of new miniSTR Loci to aid analysis of degraded DNA. J Forensic Sci 50:43–53

    Article  PubMed  CAS  Google Scholar 

  21. Vauhkonen H, Hedman M, Vauhkonen M et al (2004) Typing of XY (male) genotype from malignant neoplastic tissue by the amelogenin-based sex test. J Forensic Sci 49:222–226

    Article  PubMed  CAS  Google Scholar 

  22. Legrand B, De Mazancourt P, Durigon M et al (2002) DNA genotyping of unbuffered formalin fixed paraffin embedded tissues. Forensic Sci Int 125:205–211

    Article  PubMed  CAS  Google Scholar 

  23. Romero R, Juston AC, Ballantyne J et al (1997) The applicability of formalin-fixed and formalin-fixed paraffin-embedded tissues in forensic DNA analysis. J Forensic Sci 42:708–714

    PubMed  CAS  Google Scholar 

  24. Savioz A, Blouin JL, Guidi S et al (1997) A method for the extraction of genomic DNA from human brain tissue fixed and stored in formalin for many years. Acta Neuropathol 93:408–413

    Article  PubMed  CAS  Google Scholar 

  25. Evison MP, Smillie DM, Chamberlain AT (1997) Extraction of single-copy nuclear DNA from forensic specimens with a variety of post-mortem histories. J Forensic Sci 42:1032–1038

    PubMed  CAS  Google Scholar 

  26. Forsthoefel KF, Papp AC, Snyder PJ et al (1992) Optimization of DNA extraction from formalin-fixed tissue and its clinical application in Duchenne muscular dystrophy. Am J Clin Pathol 98:98–104

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Tozzo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananian, V., Tozzo, P., Ponzano, E. et al. Tumoural specimens for forensic purposes: comparison of genetic alterations in frozen and formalin-fixed paraffin-embedded tissues. Int J Legal Med 125, 327–332 (2011). https://doi.org/10.1007/s00414-010-0443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-010-0443-7

Keywords

Navigation