Skip to main content
Log in

Recommendations for animal DNA forensic and identity testing

  • Technical Note
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Andrea F, Fridez F, Coquoz R (1998) Preliminary experiments on the transfer of animal hair during simulated criminal behaviour. J Forensic Sci 43(6):1257–1258

    Google Scholar 

  2. Bartlett SE, Davidson WS (1992) FINS (Forensically Informative Nucleotide Sequencing): a procedure for identifying the animal origin of biological specimens. BioTechniques 12:82–92

    Google Scholar 

  3. Eichmann C, Berger B, Reinhold M, Lutz M, Parson W (2004) Canine-specific STR typing of saliva traces on dog bite wounds. Int J Legal Med 118:337–342

    Google Scholar 

  4. Eichmann C, Berger B, Parson W (2004) A proposed nomenclature for 15 canine-specific polymorphic STR loci for forensic purposes. Int J Legal Med 118:249–266

    Google Scholar 

  5. Eichmann C, Berger B, Steinlechner M, Parson W (2005) Estimating the probability of identity in a random dog population using fifteen highly polymorphic canine STR markers. Forensic Sci Int (in press)

  6. Menotti-Raymond MA, David VA, O’Brien SJ (1997) Pet cat hair implicates murder suspect. Nature 386:774

    Google Scholar 

  7. Menotti-Raymond MA, O’Brien SJ (1995) Evolutionary conservation of ten microsatellite loci in four species of Felidae. J Heredity 86(4):319–322

    Google Scholar 

  8. Moore JE (1988) A key for the identification of animal hairs. J Forensic Sci 28:335–339

    Google Scholar 

  9. Pádár Z, Egyed B, Kontadakis K, Füredi S, Woller J, Zöldág L, Fekete S (2002) Canine STR analyses in forensic practice—observation of a possible mutation in a dog hair. Int J Legal Med 116:286–288

    Google Scholar 

  10. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Google Scholar 

  11. Schneider PM, Seo Y, Rittner C (1999) Forensic mtDNA hair analysis excludes a dog from having caused a traffic accident. Int J Legal Med 112(5):315–316

    Google Scholar 

  12. Savolainen P, Rosén B, Holmberg A, Leitner T, Uhlén M, Lundeberg J (1997) Sequence analysis of domestic dog mitochondrial DNA for forensic use. J Forensic Sci 42:593–600

    Google Scholar 

  13. Savolainen P, Lundeberg J (1999) Forensic evidence based on mtDNA from dog and wolf hairs. J Forensic Sci 44:77–81

    Google Scholar 

  14. Shutler GG, Gagnon P, Verret G, Kalyn H, Korkosh S, Johnston E, Halverson J (1999) Removal of a PCR inhibitor and resolution of DNA STR types in mixed human-canine stains from a five year old case. J Forensic Sci 44(3):623–626

    Google Scholar 

  15. Wetton JH, Higgs JE, Spriggs AC, Roney CA, Tsang CSF, Foster AP (2003) Mitochondrial profiling of dog hairs. Forensic Sci Int 133:235–241

    Google Scholar 

  16. Hedmark E, Ellegren H (2005) Microsatellite genotyping of DNA isolated from claws left on tanned carnivore hides. Int J Legal Med. DOI: 10.1007/s00414-005-0521-4

  17. Bar W, Brinkmann B, Budowle B, Carracedo A, Gill P, Lincoln P, Mayr W, Olaisen B (1997) DNA recommendations. Further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. International society for forensic haemogenetics. Int J Legal Med 110(4):175–176

    Google Scholar 

  18. Bar W, Brinkmann B, Budowle B, Carracedo A, Gill P, Holland M, Lincoln PJ, Mayr W, Morling N, Olaisen B, Schneider PM, Tully G, Wilson M (2000) DNA Commission of the international society for forensic genetics: guidelines for mitochondrial DNA typing. Int J Legal Med 113(4):193–196; and Forensic Sci Int 110(2):79–85

    Google Scholar 

  19. Budowle B, Smith JA, Moretti T, DiZinno J (2000) Quality assurance standards for forensic DNA testing laboratories. In: DNA typing protocols: molecular biology and forensic analysis, biotechniques books, bioforensic sciences series. Eaton Publishing, Natick, MA, pp 228–243

    Google Scholar 

  20. Gill P, Brenner C, Brinkmann B, Budowle B, Carracedo A, Jobling MA, de Knijff P, Kayser M, Krawczak M, Mayr WR, Morling N, Olaisen B, Pascali V, Prinz M, Roewer L, Schneider PM, Sajantila A, Tyler-Smith C (2001) DNA commission of the International society of forensic genetics: recommendations on forensic analysis using Y-chromosome STRs. Int J Legal Med 114(6):305–309

    Google Scholar 

  21. Jobling MA, Gill P (2004) Encoded evidence: DNA in forensic analysis. Nat Rev Genet 5(10):739–751

    Google Scholar 

  22. Morling N, Allen R, Carracedo A, Geada H, Guidet F, Hallenberg C, Martin W, Mayr WR, Olaisen B, Pascali V, Schneider PM (2003) Recommendations on genetic investigations in paternity cases. Paternity testing commission of the international society of forensic genetics. Int J Legal Med 117(1):51–61

    Google Scholar 

  23. Lazaruk K, Walsh PS, Oaks F, Gilbert D, Rosenblum BB, Menchen S, Scheibler D, Wenz HM, Holt C, Wallin J (1998) Genotyping of forensic short tandem repeat (STR) systems based on sizing precision in a capillary electrophoresis instrument. Electrophoresis 19(1):86–93

    Google Scholar 

  24. DNA Advisory Board (July 2000) Statistical and population genetic issues affecting the evaluation of the frequency of occurrence of DNA profiles calculated from pertinent database(s). Forensic Sci Commun 2(3), at http://www.fbi.gov/hq/lab/fsc/backissu/july2000/index.htm

  25. Evett IW, Weir BS (1998) Interpreting DNA evidence: statistical genetics for forensic scientists. Sinauer, Sunderland

    Google Scholar 

  26. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256

    Google Scholar 

  27. Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    Google Scholar 

  28. Sajantila A, Lukka M, Syvanen AC (1999) Experimentally observed germline mutations at human micro- and minisatellite loci. Eur J Hum Genet 7:263–266

    Google Scholar 

  29. Bravi CM, Liron JP, Mirol PM, Ripoli MV, Peral-Garcia P, Giovambattista G (2004) A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. Legal Med 6:246–251

    Google Scholar 

  30. Linacre A, Lee JC (2004) Species determination: the role and use of the cytochrome B gene. Methods Mol Biol 297:45–52

    Google Scholar 

  31. Parson W, Pegoraro K, Niederstatter H, Foger M, Steinlechner M (2000) Species identification by means of the cytochrome b gene. Int J Legal Med 114:23–28

    Google Scholar 

  32. Pepe T, Trotta M, di Marco I, Cennamo P, Anastasio A, Cortesi ML (2005) Mitochondrial cytochrome b DNA sequence variations: an approach to fish species identification in processed fish products. J Food Prot 68:421–425

    Google Scholar 

  33. Perez J, Garcia-Vazquez E (2004) Genetic identification of nine hake species for detection of commercial fraud. J Food Prot 67:2792–2796

    Google Scholar 

  34. Rajapaksha WR, Thilakaratne ID, Chandrasiri AD, Niroshan TD (2002) Development of PCR assay for differentiation of some important wild animal meat of Sri Lanka. J Vet Med B Infect Dis Vet Public Health 49:322–324

    Google Scholar 

  35. Subramanian S, Karthik T, Vijayaraaghavan NN (2005) Single nucleotide polymorphism for animal fibre identification. J Biotechnol 116:153–158

    Google Scholar 

  36. Wan QH, Fang SG (2003) Application of species-specific polymerase chain reaction in the forensic identification of tiger species. Forensic Sci Int 131:75–78

    Google Scholar 

  37. Balitzki-Korte B, Anslinger K, Bartsch C, Rolf B (2005) Development of Y-chromosomal microsatellite markers for nonhuman primates. Int J Legal Med (in press)

  38. Erler A, Stoneking M, Kayser M (2004) Development of Y-chromosomal microsatellite markers for nonhuman primates. Mol Ecol 13:2921–2930

    Google Scholar 

  39. Olivier M, Breen M, Binns M, Lust G (1999) Localization and characterization of nucleotide sequences from the canine Y chromosome. Chromosome Res 7:223–233

    Google Scholar 

  40. Sundqvist A-K, Ellegren H, Olivier M, Vila C (2001) Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers. Mol Ecol 10:1959–1966

    Google Scholar 

  41. Van Hooft WF, Groen AF, Prins HT (2002) Phylogeography of the African buffalo based on mitochondrial and Y-chromosomal loci: Pleistocene origin and population expansion of the Cape buffalo subspecies. Mol Ecol 11:267–279

    Google Scholar 

  42. Verkaar ELC, Vervaecke H, Roden C, Mendoza LR, Barwegen MW, Susilawati T, Nijman IJ, Lenstra JA (2003) Paternally inherited markers in bovine hybrid populations. Heredity 91:565–569

    Google Scholar 

  43. Verkaar ELC, Nijman IJ, Beeke M, Hanekamp E, Lenstra JA (2004) Maternal and paternal lineages in cross-breeding bovine species. Has Wisent a hybrid origin? Mol Biol Evol 21:1165–1170

    Google Scholar 

  44. Wallner B, Brem G, Muller M, Achmann R (2003) Fixed nucleotide differences on the Y chromosome indicate clear divergence between Equus przewalski and Equus caballus. Anim Genet 34:453–456

    Google Scholar 

Download references

Acknowledgements

We thank the International Society for Animal Genetics and the Japan Organizing Committee of the 9th International Conference on Animal Genetics held in Tokyo, Japan, on 12–16 September 2004, for providing a workshop forum for the discussions that led to the drafting of these guidelines. Presentations made at the Animal Forensics Workshop in Tokyo can be viewed at http://www.vgl.ucdavis.edu/forensics/ISAG/index.html.

This is publication number 05-04 of the Laboratory Division of the Federal Bureau of Investigation. Names of commercial manufacturers are provided for identification only, and inclusion does not imply endorsement by the Federal Bureau of Investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Budowle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budowle, B., Garofano, P., Hellman, A. et al. Recommendations for animal DNA forensic and identity testing. Int J Legal Med 119, 295–302 (2005). https://doi.org/10.1007/s00414-005-0545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-005-0545-9

Keywords

Navigation