Skip to main content
Log in

Facts and artifacts in studies of gene expression in aneuploids and sex chromosomes

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Studies of gene expression in aneuploids have often made the assumption that measurements of RNA abundance from the varied chromosome will establish whether there is a dosage effect or compensation. Typical procedures of RNA isolation and use of equal amounts of RNA for quantitative estimates will not measure the total transcriptome size nor the absolute expression levels per cell. Use of internal endogenous standards or averages from unvaried chromosomes for normalizations makes the assumption that there are no global modulations across the genome. However, studies that use controls to test these assumptions reveal that there are in fact often modulations on all chromosomes. The same caveats apply to gene expression studies of sex chromosomes, which also involve changes in dosage of a small portion of the genome. Here, we describe some of the pitfalls of studies of aneuploidy and sex chromosome gene expression and review methods that have been used to avoid them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aït Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M et al (2007) Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet 81:475–491

    PubMed  PubMed Central  Google Scholar 

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375

    PubMed  CAS  Google Scholar 

  • Altug-Teber O, Bonin M, Walter M, Mau-Holzman UA, Dufke A, Stappert H, Tekesin I, Heilbronner H, Nieselt K, Riess O (2007) Specific transcriptional changes in human fetuses with autosomal trisomies. Cytogenet Genome Res 119:171–184

    PubMed  CAS  Google Scholar 

  • Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14:113–124

    PubMed  CAS  PubMed Central  Google Scholar 

  • Belote JM, Lucchesi JC (1980) Control of X chromosome transcription by the maleless gene in Drosophila. Nature 285:573–575

    PubMed  CAS  Google Scholar 

  • Bender LB, Suh J, Carroll CR, Fong Y, Fingerman IM, Briggs SD, Cao R, Zhang Y, Reinke V, Strome S (2006) MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosome in the C. elegans germ line. Development 133:3907–3917

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noel B, Bento P et al (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5:3657

    PubMed  PubMed Central  Google Scholar 

  • Bhadra U, Pal-Bhadra M, Birchler JA (1999) Role of the male specific lethal (msl) genes in modifying the effects of sex chromosomal dosage in Drosophila. Genetics 152:249–268

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bhadra U, Pal-Bhadra M, Birchler JA (2000) Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila. Genetics 155:753–763

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birchler JA (1979) A study of enzyme activities in a dosage series of the long arm of chromosome one in maize. Genetics 92:1211–1229

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birchler JA (1981) The genetic basis of dosage compensation of alcohol dehydrogenase-1 in maize. Genetics 97:625–637

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birchler JA (1992) Expression of cis-regulatory mutations of the white locus in metafemales of Drosophila melanogaster. Genet Res 59:11–18

    PubMed  CAS  Google Scholar 

  • Birchler JA (1996) X chromosome dosage compensation in Drosophila. Science 272:1190

    PubMed  CAS  Google Scholar 

  • Birchler JA, Newton KJ (1981) Modulation of protein levels in chromosomal dosage series of maize: the biochemical basis of aneuploid syndromes. Genetics 99:247–266

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birchler JA, Veitia RA (2012) Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A 109:14746–14753

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birchler JA, Hiebert JC, Krietzman M (1989) Gene expression in adult metafemales of Drosophila melanogaster. Genetics 122:869–879

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birchler JA, Hiebert JC, Paigen K (1990) Analysis of autosomal dosage compensation involving the alcohol dehydrogenase locus in Drosophila melanogaster. Genetics 124:677–686

    CAS  PubMed Central  Google Scholar 

  • Birchler JA, Bhadra U, Pal Bhadra M, Auger DL (2001) Dosage dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes and quantitative traits. Dev Biol 234:275–288

    PubMed  CAS  Google Scholar 

  • Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226

    PubMed  CAS  Google Scholar 

  • Boell L, Pallares LF, Brodski C, Chen Y, Christian JL, Kousa YA, Kuss P, Nelsen S, Novikov O, Schuttee BC, Wang Y, Tautz D (2013) Exploring the effects of gene dosage on mandible shape in mice as a model for studying the genetic basis of natural variation. Dev Genes Evol 223:279–287

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM, Kuroda MI (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8:96–104

    PubMed  CAS  Google Scholar 

  • Casanova-Saez R, Candela H, Micol JL (2014) Combined haploinsufficiency and purifying selection drive retention of RPL36a paralogs in Arabidopsis. Sci Rep 4:4122

    PubMed  PubMed Central  Google Scholar 

  • Castagné R, Rotival M, Zeller T, Wild PS, Truong V, Trégouët D-A et al (2011) The choice of the filtering method in microarrays affects the inference regarding dosage compensation of the active X-chromosome. PLoS One 6(9):e23956

    PubMed  PubMed Central  Google Scholar 

  • Chikashige Y, Tsutsumi C, Okamasa K, Yamane M, Nakayama J, Niwa O, Haraguchi T, Hiroka Y (2007) Gene expression and distribution of Swi6 in partial aneuploids of the fission yeast Schizosaccharomyces pombe. Cell Struct Funct 32:149–161

    PubMed  CAS  Google Scholar 

  • Cline TW (1979) A male-specific lethal mutation in Drosophila melanogaster that transforms sex. Dev Biol 72:266–275

    PubMed  CAS  Google Scholar 

  • Cline TW, Meyer BJ (1996) Vive la difference: males and females in flies vs worms. Annu Rev Genet 30:637–702

    PubMed  CAS  Google Scholar 

  • Coate JE, Doyle JJ (2010) Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid. Genome Biol Evol 2:534–546

    PubMed  PubMed Central  Google Scholar 

  • Conrad T, Cavalli FM, Vasquerizas JM, Luscombe NM, Akhtar A (2012) Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters. Science 337:742–746

    PubMed  CAS  Google Scholar 

  • Cribb DL, Benassayag C, Randazzo FM, Kaufman TC (1995) Levels of homeotic protein function can determine developmental identity: evidence from low-level expression of the Drosophila homeotic gene proboscipedia under Hsp70 control. EMBO J 14:767–778

    Google Scholar 

  • De Clare M, Pir P, Oliver SG (2011) Haploinsufficiency and the sex chromosomes from yeasts to humans. BMC Biol 9:15

    PubMed  PubMed Central  Google Scholar 

  • Deng X, Meller VH (2006) roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster. Genetics 174:1859–1866

    PubMed  CAS  PubMed Central  Google Scholar 

  • Deng X, Berletch JB, Ma W, Nguyen DK, Hiatt JB, Noble WS et al (2013) Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation. Dev Cell 25:55–68

    PubMed  CAS  PubMed Central  Google Scholar 

  • Detwiler C, MacIntyre R (1978) A genetic and developmental analysis of an acid deoxyribonuclease in Drosophila melanogaster. Biochem Genet 16:1113–1134

    PubMed  CAS  Google Scholar 

  • Devlin RH, Holm DG, Grigliatti TA (1982) Autosomal dosage compensation in Drosophila melanogaster strains trisomic for the left arm of chromosome 2. Proc Natl Acad Sci U S A 79:1200–1204

    PubMed  CAS  PubMed Central  Google Scholar 

  • Devlin RH, Holm DG, Grigliatti TA (1988) The influence of whole-arm trisomy on gene expression in Drosophila. Genetics 118:87–101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Driever W, Nusslein-Volhard C (1988) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104

    PubMed  CAS  Google Scholar 

  • Fong Y, Bender L, Wang W, Strome S (2002) Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science 296:2235–2238

    PubMed  CAS  PubMed Central  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    PubMed  CAS  Google Scholar 

  • Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325

    PubMed  CAS  Google Scholar 

  • Gergen JP, Wieshaus E (1986) Dosage requirements for runt in the segmentation of Drosophila embryos. Cell 45:289–299

    PubMed  CAS  Google Scholar 

  • Guo M, Birchler JA (1994) Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science 266:1999–2002

    PubMed  CAS  Google Scholar 

  • Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, Dudko OK, Malley JD, Eastman PS, Oliver B (2006) Global analysis of X-chromosome dosage compensation. J Biol 5:3

    PubMed  PubMed Central  Google Scholar 

  • Hall J, Kankel DR (1976) Genetics of acetylcholinesterase in D. melanogaster. Genetics 83:517–533

    PubMed  CAS  PubMed Central  Google Scholar 

  • Henikoff S (1996) Dosage-dependent modification of position-effect variegation in Drosophila. Bioesssays 18:401–409

    CAS  Google Scholar 

  • Hiebert JC, Birchler JA (1994) Effects of the maleless mutation on X and autosomal gene expression in Drosophila melanogaster. Genetics 136:913–926

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation. EMBO J 16:2054–2060

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hodgetts RB (1975) Response of DOPA decarboxylase activity variations in gene dosage in Drosophila: a possible location of the structural gene. Genetics 79:45–54

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hough J, Hollister JD, Wang W, Barrett SCH, Wright SI (2014) Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. Proc Natl Acad Sci USA 111:7713–7718

  • Huettel B, Kreil DP, Matzke M, Matzke AJM (2008) Effects of aneuploidy on genome structure, expression and interphase organization in Arabidopsis thaliana. PLoS Genet 4:e1000226

    PubMed  PubMed Central  Google Scholar 

  • Itzkovitz S, van Oudenaarden A (2011) Validating transcripts with probes and imaging technology. Nat Methods 8:S12–S19

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jans J, Gladden JM, Ralston EJ, Pickle CS, Michel AH, Pferdehirt RR, Eisen MB, Meyer BJ (2009) A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome. Genes Dev 23:602–618

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jin Y, Wang Y, Walker DL, Dong H, Conley C, Johansen J, Johansen KM (1999) JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4:129–135

    PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Johansen J, Johansen KM (2000) JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol 149:1005–1010

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jue NK, Murphy MB, Kasowitz SD, Qureshi SM, Obergfell CJ, Elsisi S et al (2013) Determination of dosage compensation of the mammalian X chromosome by RNA-seq is dependent on analytical approach. BMC Genomics 14:150

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kahlem P, Sultan M, Herwig R, Steinfath M, Balzereit D, Eppens B, Saran NG, Pletcher MT, South ST, Stetten G et al (2004) Transcript level alterations reflect gene dosage effects across multiple tissues in a mouse model of Down syndrome. Genome Res 14:1258–1267

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kelley RL, Solovyeva I, Lyman LM, Richman R, Solovyev V, Kuroda MI (1995) Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81:867–877

    PubMed  CAS  Google Scholar 

  • Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S et al (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222

    PubMed  CAS  Google Scholar 

  • Kruesi WS, Core LJ, Waters CT, Lis JT, Meyer BJ (2013) Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife 2:e00808

    PubMed  PubMed Central  Google Scholar 

  • Kuroda MI, Kernan MJ, Kreber R, Ganetsky B, Baker BS (1991) The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66:6300–6304

    Google Scholar 

  • Larschan E, Bishop EP, Kharchenko PV, Core L, Lis JT, Park PJ, Kuroda MI (2011) X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471:115–118

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lin F, Xing K, Zhang J, He X (2012) Expression reduction in mammalian X chromosome evolution refutes Ohno’s hypothesis of dosage compensation. Proc Natl Acad Sci U S A 109:11752–11757

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loven J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Lee TI, Young RA (2012) Revisiting global gene expression analysis. Cell 151:476–482

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lucchesi JC, Rawls JM Jr (1973a) Regulation of gene function: a comparison of enzyme activity levels in relation to gene dosage in diploids and triploids of Drosophila melanogaster. Biochem Genet 9:41–51

    PubMed  CAS  Google Scholar 

  • Lucchesi JC, Rawls JM Jr (1973b) Regulation of gene function: a comparison of enzyme activity levels in normal and intersexual triploids of Drosophila melanogaster. Genetics 73:459–464

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lucchesi JC, Belote JM, Maroni G (1977) X-linked gene activity in metamales (XY; 3A) of Drosophila. Chromosoma 65:1–7

    CAS  Google Scholar 

  • Makarevitch I, Phillips RL, Springer NM (2008) Profiling expression changes caused by a segmental aneuploid in maize. BMC Genomics 9:7

    PubMed  PubMed Central  Google Scholar 

  • Makino T, McLysaght A (2010) Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proc Natl Acad Sci U S A 107:9270–9274

    PubMed  CAS  PubMed Central  Google Scholar 

  • Malone JH, Cho D-Y, Mattiuzzo NR, Artieri CG, Jiang L, Dale RK, Smith HE, McDaniel J, Munro S, Salit M, Andrews J, Przytycka TM, Oliver B (2012) Mediation of Drosophila autosomal dosage effects and compensation by network interactions. Genome Biol 13:r28

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maroni G, Plaut W (1973) Dosage compensation in Drosophila melanogaster triploids. I. Autoradiography study. Chromosoma 40:361–377

    PubMed  CAS  Google Scholar 

  • McDaniel RG, Ramage RT (1970) Genetics of primary trisomic series in barley: identification by protein identification. Can J Genet Cytol 12:155–167

    Google Scholar 

  • Moore GP, Sullivan DT (1978) Biochemical and genetic characterization of kynurenine formamidase from Drosophila melanogaster. Biochem Genet 16:619–634

    PubMed  CAS  Google Scholar 

  • Muller HJ (1932) Further studies on the nature and causes of gene mutations. Proc 6th Int Congr Genet 1:213–255

    Google Scholar 

  • Muller HJ (1950) Evidence of the precision of genetic adaptation. Harvey Lect 43:165–229

    Google Scholar 

  • Nawata H, Kashino G, Tano K, Daino K, Shimada Y, Kugoh H, Oshimura M, Watanabe M (2011) Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes. PLoS One 6:e25319

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38:47–53

    PubMed  CAS  Google Scholar 

  • O'Brien SJ, Gethman RC (1973) Segmental aneuploidy as a probe for structural genes in Drosophila: mitochondrial membrane enzymes. Genetics 75:155–167

    PubMed  PubMed Central  Google Scholar 

  • Okuno T, Satou T, Oishi K (1984) Studies on sex-specific lethals in Drosophila melanogaster. Jpn J Genet 59:237–247

    Google Scholar 

  • Oliver MJ, Huber RE, Williamson JW (1978) Genetic and biochemical aspects of trehalase from Drosophila melanogaster. Biochem Genet 16:927–940

    PubMed  CAS  Google Scholar 

  • Pal Bhadra M, Bhadra U, Kundu J, Birchler JA (2005) Gene expression analysis of the function of the male-specific lethal complex in Drosophila. Genetics 169:2061–2074

    PubMed Central  Google Scholar 

  • Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197

    PubMed  CAS  Google Scholar 

  • Pessia E, Makino T, Bailly-Bechet M, McLysaght A, Marais GAB (2012) Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci U S A 109:5346–5351

    PubMed  CAS  PubMed Central  Google Scholar 

  • Philip P, Stenburg P (2013) Male X-linked genes in Drosophila melanogaster are compensated independently of the Male-Specific Lethal complex. Epigenet Chromatin 6:35

    Google Scholar 

  • Pipkin SB, Chakrabartty PK, Bremner TA (1977) Location and regulation of Drosophila fumarase. J Hered 68:245–252

    CAS  Google Scholar 

  • Plenefisch JD, De Long L, Meyer BJ (1989) Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics 121:57–76

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rabinow L, Nguyen-Huynh AT, Birchler JA (1991) A trans-acting regulatory gene that inversely affects the expression of the white, brown and scarlet loci in Drosophila melanogaster. Genetics 129:463–480

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rawls JM, Lucchesi JC (1974) Regulation of enzyme activities in Drosophila. I. The detection of regulatory loci by gene dosage responses. Genet Res 24:59–72

    PubMed  CAS  Google Scholar 

  • Riddle NC, Jiang H, An L, Doerge RW, Birchler JA (2010) Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor Appl Genet 120:341–353

    PubMed  CAS  Google Scholar 

  • Sabl JF, Birchler JA (1993) Dosage dependent modifiers of white alleles in Drosophila melanogaster. Genet Res 62:15–22

    PubMed  CAS  Google Scholar 

  • Sauer F, Jackle H (1991) Concentration-dependent transcriptional activation or repression by Kruppel from a single binding site. Nature 353:563–566

    PubMed  CAS  Google Scholar 

  • Schulz C, Tautz D (1994) Autonomous concentration-dependent activation and repression of Kruppel by hunchback in the Drosophila embryo. Development 120:3043–3049

    PubMed  CAS  Google Scholar 

  • Seidman JG, Seidman C (2002) Transcription factor haploinsufficiency: when half a loaf is not enough. J Clin Invest 109:451–455

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith HH, Conklin ME (1975) Effects of gene dosage on peroxidase isozymes in Datura stramonium trisomics, pp. 603–618 in Isozymes, Vol 3. In: Markert CL (ed) Developmental biology. Academic Press, New York

    Google Scholar 

  • Springer M, Weissman JS, Kirshner MW (2010) A general lack of compensation for gene dosage in yeast. Mol Syst Biol 6:368

    PubMed  PubMed Central  Google Scholar 

  • Stern C (1960) Dosage compensation—development of a concept and new facts. Can J Genet Cytol 2:105–118

    Google Scholar 

  • Struhl G, Struhl K, Mcdonald PM (1989) The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57:1259–1273

    PubMed  CAS  Google Scholar 

  • Sun X, Birchler JA (2009) Interaction study of the male specific lethal (MSL) complex and trans-acting dosage effects in metafemales of Drosophila melanogaster. Cytogenet Genome Res 124:298–311

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun L, Fernandez H, Donohue RC, Li J, Cheng J, Birchler JA (2013a) Male-specific lethal complex in Drosophila counteracts histone acetylation and does not mediate dosage compensation. Proc Natl Acad Sci U S A 110:E808–E817

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun L, Johnson AF, Donohue RC, Li J, Cheng J, Birchler JA (2013b) Dosage compensation and inverse effects in triple X metafemales of Drosophila. Proc Natl Acad Sci U S A 110:7383–7388

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun L, Johnson AF, Li J, Lambdin AS, Cheng J, Birchler JA (2013c) Differential effect of aneuploidy on the X chromosome and genes with sex-biased expression in Drosophila. Proc Natl Acad Sci U S A 110:16514–16519

    PubMed  CAS  PubMed Central  Google Scholar 

  • Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916–923

    PubMed  CAS  Google Scholar 

  • Veitia RA (2002) Exploring the etiology of haploinsufficiency. Bioessays 24:175–184

    PubMed  CAS  Google Scholar 

  • Veitia R, Bottani S, Birchler JA (2008) Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet 24:390–397

    PubMed  CAS  Google Scholar 

  • Veitia RA, Bottani S, Birchler JA (2013) Gene dosage effects: non-linearities, genetic interactions and dosage compensation. Trends Genet 29:385–393

    PubMed  CAS  Google Scholar 

  • Warrior R, Levine M (1990) Dose-dependent regulation of pair-rule stripes by gap proteins and the initiation of segment polarity. Development 110:759–767

    PubMed  CAS  Google Scholar 

  • Wijchers PJ, Yandim C, Panousopoulou E, Ahmad M, Harker N, Saveliev A, Burgoyne PS, Festenstein R (2010) Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well. Dev Cell 19:477–484

    PubMed  CAS  Google Scholar 

  • Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Hoursman DE, Amon A (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xie W, Birchler JA (2012) Identification of Inverse Regulator-a (Inr-a) as synonymous with pre-RNA cleavage complex II protein (Pcf11) in Drosophila. G3 2: 701–706

  • Xiong Y, Chen X, Chen Z, Wang X, Shi S, Wang X et al (2010) RNA sequencing shows no dosage compensation of the active X-chromosome. Nat Genet 42:1043–1047

    PubMed  CAS  Google Scholar 

  • Yildirim E, Sadreyev RI, Pinter SF, Lee JT (2011) X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription. Nat Struct Mol Biol 19:56–61

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is supported by the NIH grant RO1GM068042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birchler, J.A. Facts and artifacts in studies of gene expression in aneuploids and sex chromosomes. Chromosoma 123, 459–469 (2014). https://doi.org/10.1007/s00412-014-0478-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0478-5

Keywords

Navigation