Skip to main content
Log in

DNA replication and homologous recombination factors: acting together to maintain genome stability

  • Review Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Genome duplication requires the coordinated action of multiple proteins to ensure a fast replication with high fidelity. These factors form a complex called the Replisome, which is assembled onto the DNA duplex to promote its unwinding and to catalyze the polymerization of two new strands. Key constituents of the Replisome are the Cdc45-Mcm2-7-GINS helicase and the And1-Claspin-Tipin-Tim1 complex, which coordinate DNA unwinding with polymerase alpha-, delta-, and epsilon- dependent DNA polymerization. These factors encounter numerous obstacles, such as endogenous DNA lesions leading to template breakage and complex structures arising from intrinsic features of specific DNA sequences. To overcome these roadblocks, homologous recombination DNA repair factors, such as Rad51 and the Mre11-Rad50-Nbs1 complex, are required to ensure complete and faithful replication. Consistent with this notion, many of the genes involved in this process result in lethal phenotypes when inactivated in organisms with complex and large genomes. Here, we summarize the architectural and functional properties of the Replisome and propose a unified view of DNA replication and repair processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe T, Sugimura K, Hosono Y, Takami Y, Akita M, Yoshimura A, Tada S, Nakayama T, Murofushi H, Okumura K, Takeda S, Horikoshi M, Seki M, Enomoto T (2011) The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J Biol Chem 286:30504–30512

    PubMed  CAS  Google Scholar 

  • Alcasabas AA, Osborn AJ, Bachant J, Hu F, Werler PJ, Bousset K, Furuya K, Diffley JF, Carr AM, Elledge SJ (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3:958–965

    PubMed  CAS  Google Scholar 

  • Arias EE, Walter JC (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21:497–518

    PubMed  CAS  Google Scholar 

  • Asturias FJ, Cheung IK, Sabouri N, Chilkova O, Wepplo D, Johansson E (2006) Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy. Nat Struct Mol Biol 13:35–43

    PubMed  CAS  Google Scholar 

  • Augustin MA, Huber R, Kaiser JT (2001) Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat Struct Biol 8:57–61

    PubMed  CAS  Google Scholar 

  • Baranovskiy AG, Babayeva ND, Liston VG, Rogozin IB, Koonin EV, Pavlov YI, Vassylyev DG, Tahirov TH (2008) X-ray structure of the complex of regulatory subunits of human DNA polymerase delta. Cell Cycle 7:3026–3036

    PubMed  CAS  Google Scholar 

  • Barry ER, Lovett JE, Costa A, Lea SM, Bell SD (2009) Intersubunit allosteric communication mediated by a conserved loop in the MCM helicase. Proc Natl Acad Sci U S A 106:1051–1056

    PubMed  CAS  Google Scholar 

  • Bermudez VP, Farina A, Raghavan V, Tappin I, Hurwitz J (2011) Studies on human DNA polymerase epsilon and GINS complex and their role in DNA replication. J Biol Chem 286:28963–28977

    PubMed  CAS  Google Scholar 

  • Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31:287–293

    PubMed  CAS  Google Scholar 

  • Bochman ML, Schwacha A (2010) The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate'. Nucleic Acids Res 38:6078–6088

    PubMed  CAS  Google Scholar 

  • Boos D, Frigola J, Diffley JF (2012) Activation of the replicative DNA helicase:breaking up is hard to do. Curr Opin Cell Biol 24:423–430

    PubMed  CAS  Google Scholar 

  • Botchan M, Berger J (2010) DNA replication: making two forks from one prereplication complex. Mol Cell 40:860–861

    PubMed  CAS  Google Scholar 

  • Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadia M, Klein MG, Chen XS (2008) Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA + hexameric helicase. Proc Natl Acad Sci U S A 105:20191–20196

    PubMed  CAS  Google Scholar 

  • Bruck I, Kaplan DL (2013) Cdc45 Protein-single-stranded DNA interaction is important for stalling the helicase during replication stress. J Biol Chem 288:7550–7563

    PubMed  CAS  Google Scholar 

  • Bruning JB, Shamoo Y (2004) Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1. Structure 12:2209–2219

    PubMed  CAS  Google Scholar 

  • Buis J, Wu Y, Deng Y, Leddon J, Westfield G, Eckersdorff M, Sekiguchi JM, Chang S, Ferguson DO (2008) Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 135:85–96

    PubMed  CAS  Google Scholar 

  • Chang YP, Wang G, Bermudez V, Hurwitz J, Chen XS (2007) Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci U S A 104:12685–12690

    PubMed  CAS  Google Scholar 

  • Cho WH, Kang YH, An YY, Tappin I, Hurwitz J, Lee JK (2013) Human Tim-Tipin complex affects the biochemical properties of the replicative DNA helicase and DNA polymerases. Proc Natl Acad Sci U S A 110:2523–2527

    PubMed  CAS  Google Scholar 

  • Choi JM, Lim HS, Kim JJ, Song OK, Cho Y (2007) Crystal structure of the human GINS complex. Genes Dev 21:1316–1321

    PubMed  CAS  Google Scholar 

  • Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A 97:1530–1535

    PubMed  CAS  Google Scholar 

  • Chou DM, Elledge SJ (2006) Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc Natl Acad Sci U S A 103:18143–18147

    PubMed  CAS  Google Scholar 

  • Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627

    PubMed  CAS  Google Scholar 

  • Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18:471–477

    PubMed  CAS  Google Scholar 

  • Costanzo V, Gautier J (2003) Single-strand DNA gaps trigger an ATR- and Cdc7-dependent checkpoint. Cell Cycle 2:17

    PubMed  CAS  Google Scholar 

  • Costanzo V, Gautier J (2004) Xenopus cell-free extracts to study DNA damage checkpoints. Methods Mol Biol 241:255–267

    PubMed  CAS  Google Scholar 

  • Costanzo V, Robertson K, Bibikova M, Kim E, Grieco D, Gottesman M, Carroll D, Gautier J (2001) Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell 8:137–147

    PubMed  CAS  Google Scholar 

  • Costanzo V, Chaudhuri J, Fung JC, Moran JV (2009) Dealing with dangerous accidents: DNA double-strand breaks take centre stage. Symposium on Genome Instability and DNA Repair. EMBO Rep 10:837–842

    PubMed  CAS  Google Scholar 

  • Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, Sogo J, Foiani M (2005) Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol Cell 17:153–159

    PubMed  CAS  Google Scholar 

  • D'Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327

    PubMed  Google Scholar 

  • De Falco M, Ferrari E, De Felice M, Rossi M, Hubscher U, Pisani FM (2007) The human GINS complex binds to and specifically stimulates human DNA polymerase alpha-primase. EMBO Rep 8:99–103

    PubMed  Google Scholar 

  • Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, Mathur R, Chabes A, Malkova A (2011) Break-induced replication is highly inaccurate. PLoS Biology 9:e1000594

    PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1998) Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway. J Biol Chem 273:30046–30055

    PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274:22283–22288

    PubMed  CAS  Google Scholar 

  • Errico A, Costanzo V (2012) Mechanisms of replication fork protection: a safeguard for genome stability. Crit Rev Biochem Mol Biol 47:222–235

    PubMed  CAS  Google Scholar 

  • Errico A, Costanzo V, Hunt T (2007) Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc Natl Acad Sci U S A 104:14929–14934

    PubMed  CAS  Google Scholar 

  • Errico A, Cosentino C, Rivera T, Losada A, Schwob E, Hunt T, Costanzo V (2009) Tipin/Tim1/And1 protein complex promotes Pol alpha chromatin binding and sister chromatid cohesion. EMBO J 28:3681–3692

    PubMed  CAS  Google Scholar 

  • Feng W, D'Urso G (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol Cell Biol 21:4495–4504

    PubMed  CAS  Google Scholar 

  • Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS (2003) The structure and function of MCM from archaeal M. thermoautotrophicum. Nat Struct Biol 10:160–167

    PubMed  CAS  Google Scholar 

  • Frick DN, Richardson CC (2001) DNA primases. Annu Rev Biochem 70:39–80

    PubMed  CAS  Google Scholar 

  • Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–941

    PubMed  CAS  Google Scholar 

  • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366

    PubMed  CAS  Google Scholar 

  • Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28:2992–3004

    PubMed  CAS  Google Scholar 

  • Gerik KJ, Li X, Pautz A, Burgers PM (1998) Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 273:19747–19755

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V (2010) Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17:1305–1311

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Puddu F, Costanzo V (2011) RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol 19:17–24

    PubMed  Google Scholar 

  • Hicks WM, Kim M, Haber JE (2010) Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329:82–85

    PubMed  CAS  Google Scholar 

  • Hogg M, Johansson E (2012) DNA Polymerase epsilon. Subcell Biochem 62:237–257

    PubMed  CAS  Google Scholar 

  • Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258

    PubMed  CAS  Google Scholar 

  • Ilves I, Tamberg N, Botchan MR (2012) Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex. Proc Natl Acad Sci U S A 109:13163–13170

    PubMed  CAS  Google Scholar 

  • Im JS, Ki SH, Farina A, Jung DS, Hurwitz J, Lee JK (2009) Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci U S A 106:15628–15632

    PubMed  CAS  Google Scholar 

  • Jensen RB, Carreira A, Kowalczykowski SC (2010) Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678–683

    PubMed  CAS  Google Scholar 

  • Johansson E, Macneill SA (2010) The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci 35:339–347

    PubMed  CAS  Google Scholar 

  • Kamada K (2012) The GINS Complex: structure and function. Subcell Biochem 62:135–156

    PubMed  CAS  Google Scholar 

  • Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F (2007) Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol 14:388–396

    PubMed  CAS  Google Scholar 

  • Kamimura Y, Tak YS, Sugino A, Araki H (2001) Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J 20:2097–2107

    PubMed  CAS  Google Scholar 

  • Kang YH, Galal WC, Farina A, Tappin I, Hurwitz J (2012) Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci U S A 109:6042–6047

    PubMed  CAS  Google Scholar 

  • Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H (2012) Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J 31:2182–2194

    PubMed  CAS  Google Scholar 

  • Kelman Z, Lee JK, Hurwitz J (1999) The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc Natl Acad Sci U S A 96:14783–14788

    PubMed  CAS  Google Scholar 

  • Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3:679–685

    PubMed  CAS  Google Scholar 

  • Kilkenny ML, De Piccoli G, Perera RL, Labib K, Pellegrini L (2012) A conserved motif in the C-terminal tail of DNA polymerase alpha tethers primase to the eukaryotic replisome. J Biol Chem 287:23740–23747

    PubMed  CAS  Google Scholar 

  • Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L (2009) 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J 28:1978–1987

    PubMed  CAS  Google Scholar 

  • Krastanova I, Sannino V, Amenitsch H, Gileadi O, Pisani FM, Onesti S (2012) Structural and functional insights into the DNA replication factor Cdc45 reveal an evolutionary relationship to the DHH family of phosphoesterases. J Biol Chem 287:4121–4128

    PubMed  CAS  Google Scholar 

  • Labib K (2010) How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev 24:1208–1219

    PubMed  CAS  Google Scholar 

  • Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, Freon K, Murray JM, Carr AM, Baldacci G (2010) Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol Cell 39:346–359

    PubMed  CAS  Google Scholar 

  • Lao-Sirieix SH, Nookala RK, Roversi P, Bell SD, Pellegrini L (2005a) Structure of the heterodimeric core primase. Nat Struct Mol Biol 12:1137–1144

    PubMed  CAS  Google Scholar 

  • Lao-Sirieix SH, Pellegrini L, Bell SD (2005b) The promiscuous primase. Trends Genet: TIG 21:568–572

    PubMed  CAS  Google Scholar 

  • Lee J, Kumagai A, Dunphy WG (2003) Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol Cell 11:329–340

    PubMed  CAS  Google Scholar 

  • Li H, Xie B, Zhou Y, Rahmeh A, Trusa S, Zhang S, Gao Y, Lee EY, Lee MY (2006) Functional roles of p12, the fourth subunit of human DNA polymerase delta. J Biol Chem 281:14748–14755

    PubMed  CAS  Google Scholar 

  • Li Z, Santangelo TJ, Cubonova L, Reeve JN, Kelman Z (2010) Affinity purification of an archaeal DNA replication protein network. mBio 1

  • Li Z, Pan M, Santangelo TJ, Chemnitz W, Yuan W, Edwards JL, Hurwitz J, Reeve JN, Kelman Z (2011) A novel DNA nuclease is stimulated by association with the GINS complex. Nucleic Acids Res 39:6114–6123

    PubMed  CAS  Google Scholar 

  • Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133

    PubMed  CAS  Google Scholar 

  • Liu L, Mo J, Rodriguez-Belmonte EM, Lee MY (2000) Identification of a fourth subunit of mammalian DNA polymerase delta. J Biol Chem 275:18739–18744

    PubMed  CAS  Google Scholar 

  • Liu S, Bekker-Jensen S, Mailand N, Lukas C, Bartek J, Lukas J (2006) Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 26:6056–6064

    PubMed  CAS  Google Scholar 

  • Llorente B, Smith CE, Symington LS (2008) Break-induced replication: what is it and what is it for? Cell Cycle 7:859–864

    PubMed  CAS  Google Scholar 

  • Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32:106–117

    PubMed  CAS  Google Scholar 

  • Lovett ST, Clark AJ (1984) Genetic analysis of the recJ gene of Escherichia coli K-12. J Bacteriol 157:190–196

    PubMed  CAS  Google Scholar 

  • Lu X, Tan CK, Zhou JQ, You M, Carastro LM, Downey KM, So AG (2002) Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta. J Biol Chem 277:24340–24345

    PubMed  CAS  Google Scholar 

  • Lydeard JR, Jain S, Yamaguchi M, Haber JE (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820–823

    PubMed  CAS  Google Scholar 

  • Lydeard JR, Lipkin-Moore Z, Sheu YJ, Stillman B, Burgers PM, Haber JE (2010) Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev 24:1133–1144

    PubMed  CAS  Google Scholar 

  • Lyubimov AY, Strycharska M, Berger JM (2011) The nuts and bolts of ring-translocase structure and mechanism. Curr Opin Struct Biol 21:240–248

    PubMed  CAS  Google Scholar 

  • Lyubimov AY, Costa A, Bleichert F, Botchan MR, Berger JM (2012) ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote. Proc Natl Acad Sci U S A 109:11999–12004

    PubMed  CAS  Google Scholar 

  • Macneill S (2012) Composition and dynamics of the eukaryotic replisome: a brief overview. Subcell Biochem 62:1–17

    PubMed  CAS  Google Scholar 

  • Makarova KS, Koonin EV, Kelman Z (2012) The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct 7:7

    PubMed  CAS  Google Scholar 

  • Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD (2006) GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep 7:539–545

    PubMed  CAS  Google Scholar 

  • Meng X, Zhou Y, Zhang S, Lee EY, Frick DN, Lee MY (2009) DNA damage alters DNA polymerase delta to a form that exhibits increased discrimination against modified template bases and mismatched primers. Nucleic Acids Res 37:647–657

    PubMed  CAS  Google Scholar 

  • Meng X, Zhou Y, Lee EY, Lee MY, Frick DN (2010) The p12 subunit of human polymerase delta modulates the rate and fidelity of DNA synthesis. Biochemistry 49:3545–3554

    PubMed  CAS  Google Scholar 

  • Miles J, Formosa T (1992) Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo. Mol Cell Biol 12:5724–5735

    PubMed  CAS  Google Scholar 

  • Mizuno K, Lambert S, Baldacci G, Murray JM, Carr AM (2009) Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes Dev 23:2876–2886

    PubMed  CAS  Google Scholar 

  • Mizuno K, Miyabe I, Schalbetter SA, Carr AM, Murray JM (2013) Recombination-restarted replication makes inverted chromosome fusions at inverted repeats. Nature 493:246–249

    PubMed  CAS  Google Scholar 

  • Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103:10236–10241

    PubMed  CAS  Google Scholar 

  • Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon}, and GINS in budding yeast. Genes Dev 24:602–612

    PubMed  CAS  Google Scholar 

  • Nedelcheva MN, Roguev A, Dolapchiev LB, Shevchenko A, Taskov HB, Shevchenko A, Stewart AF, Stoynov SS (2005) Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J Mol Biol 347:509–521

    PubMed  CAS  Google Scholar 

  • Netz DJ, Stith CM, Stumpfig M, Kopf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PM, Pierik AJ (2012) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8:125–132

    CAS  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    PubMed  CAS  Google Scholar 

  • Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30:137–144

    PubMed  CAS  Google Scholar 

  • Nunez-Ramirez R, Klinge S, Sauguet L, Melero R, Recuero-Checa MA, Kilkenny M, Perera RL, Garcia-Alvarez B, Hall RJ, Nogales E, Pellegrini L, Llorca O (2011) Flexible tethering of primase and DNA Pol alpha in the eukaryotic primosome. Nucleic Acids Res 39:8187–8199

    PubMed  CAS  Google Scholar 

  • Nuutinen T, Tossavainen H, Fredriksson K, Pirila P, Permi P, Pospiech H, Syvaoja JE (2008) The solution structure of the amino-terminal domain of human DNA polymerase epsilon subunit B is homologous to C-domains of AAA+ proteins. Nucleic Acids Res 36:5102–5110

    PubMed  CAS  Google Scholar 

  • Osborn AJ, Elledge SJ (2003) Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17:1755–1767

    PubMed  CAS  Google Scholar 

  • Pellegrini L (2012) The Pol alpha-Primase complex. Subcell Biochem 62:157–169

    PubMed  CAS  Google Scholar 

  • Pellegrini L, Venkitaraman A (2004) Emerging functions of BRCA2 in DNA recombination. Trends Biochem Sci 29:310–316

    PubMed  CAS  Google Scholar 

  • Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420:287–293

    PubMed  CAS  Google Scholar 

  • Podust VN, Chang LS, Ott R, Dianov GL, Fanning E (2002) Reconstitution of human DNA polymerase delta using recombinant baculoviruses: the p12 subunit potentiates DNA polymerizing activity of the four-subunit enzyme. J Biol Chem 277:3894–3901

    PubMed  CAS  Google Scholar 

  • Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317:127–130

    PubMed  CAS  Google Scholar 

  • Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719–730

    PubMed  CAS  Google Scholar 

  • Reynolds N, Watt A, Fantes PA, MacNeill SA (1998) Cdm1, the smallest subunit of DNA polymerase d in the fission yeast Schizosaccharomyces pombe, is non-essential for growth and division. Curr Genet 34:250–258

    PubMed  CAS  Google Scholar 

  • San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    PubMed  CAS  Google Scholar 

  • Sanchez-Pulido L, Ponting CP (2011) Cdc45: the missing RecJ ortholog in eukaryotes? Bioinformatics 27:1885–1888

    PubMed  CAS  Google Scholar 

  • Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–542

    PubMed  CAS  Google Scholar 

  • Segurado M, Diffley JF (2008) Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev 22:1816–1827

    PubMed  CAS  Google Scholar 

  • Su X, Bernal JA, Venkitaraman AR (2008) Cell-cycle coordination between DNA replication and recombination revealed by a vertebrate N-end rule degron-Rad51. Nat Struct Mol Biol 15:1049–1058

    PubMed  CAS  Google Scholar 

  • Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat Struct Mol Biol 16:979–986

    PubMed  CAS  Google Scholar 

  • Szyjka SJ, Viggiani CJ, Aparicio OM (2005) Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell 19:691–697

    PubMed  CAS  Google Scholar 

  • Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV (2009) Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol Direct 4:11

    PubMed  Google Scholar 

  • Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T, Araki H, Bando M, Shirahige K (2009) Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells: Devoted Mol Cell Mech 14:807–820

    CAS  Google Scholar 

  • Tercero JA, Labib K, Diffley JF (2000) DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p. EMBO J 19:2082–2093

    PubMed  CAS  Google Scholar 

  • Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P (2005) Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell 19:699–706

    PubMed  CAS  Google Scholar 

  • van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K (2012) Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J 31:2195–2206

    PubMed  Google Scholar 

  • Vijayraghavan S, Schwacha A (2012) The eukaryotic mcm2-7 replicative helicase. Subcell Biochem 62:113–134

    PubMed  CAS  Google Scholar 

  • Vos SM, Tretter EM, Schmidt BH, Berger JM (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 12:827–841

    PubMed  CAS  Google Scholar 

  • Waga S, Stillman B (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369:207–212

    PubMed  CAS  Google Scholar 

  • Winkler DD, Luger K (2011) The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem 286:18369–18374

    PubMed  CAS  Google Scholar 

  • Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC (2010) Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell 40:834–840

    PubMed  CAS  Google Scholar 

  • Zegerman P, Diffley JF (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:281–285

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors should like to thank Adelina Davies for the critical reading of the manuscript. This work was funded by Cancer Research UK. V.C. is also supported by the European Research Council (ERC) start-up grant (206281), the Lister Institute of Preventive Medicine and the European Molecular Biology Organization (EMBO) Young Investigator Program (YIP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Costa or Vincenzo Costanzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aze, A., Zhou, J.C., Costa, A. et al. DNA replication and homologous recombination factors: acting together to maintain genome stability. Chromosoma 122, 401–413 (2013). https://doi.org/10.1007/s00412-013-0411-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0411-3

Keywords

Navigation