Skip to main content
Log in

Heterochromatin and histone modifications in the germline-restricted chromosome of the zebra finch undergoing elimination during spermatogenesis

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In the zebra finch (Taeniopygia guttata) a germline-restricted chromosome (GRC) is regularly present in males and females. While the GRC is euchromatic in oocytes, in spermatocytes this chromosome is cytologically seen as entirely heterochromatic and presumably inactive. At the end of male meiosis, the GRC is eliminated from the nucleus. By immunofluorescence on microspreads, we investigated HP1 proteins and histone modifications throughout male meiotic prophase, as well as in young spermatid stages after the GRC elimination. We found that in prophase spermatocytes the GRC chromatin differs from that of the regular chromosome complement. The GRC is highly enriched in HP1β and exhibits high levels of di- and tri-methylated histone H3 at lysine 9 and tri- and di-methylated histone H4 at lysine 20. The GRC does not exhibit neither detectable levels of di- and tri-methylated histone H3 at lysine 4 nor acetylated histone H4 at lysine 5 and 8. The results prove the heterochromatic organization of the GRC in male germline and strongly suggest its transcriptional inactive state during male prophase. Following elimination, in young spermatids the GRC lacks HP1β signals but maintains high levels of methylated histone H3 at lysine 9 and methylated histone H4 at lysine 20. The release of HP1 from the GRC with respect to its elimination is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  CAS  PubMed  Google Scholar 

  • Bellani MA, Romanienko PJ, Cairatti DA, Camerini-Otero RD (2005) SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm-/- spermatocytes. J Cell Sci 118:3233–3245

    Article  CAS  PubMed  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  CAS  PubMed  Google Scholar 

  • Ebert A, Lein S, Schottta G, Reuter G (2006) Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 14:377–392

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–2

    Article  CAS  PubMed  Google Scholar 

  • Gerbi S (1986) Unusual movements in sciarid flies. In: Hennig W (ed) Germ line-soma differentiation. Results and problems of cell differentiation. Springer Verlag, New York, pp 71–10

    Google Scholar 

  • Gilbert N, Boyle S, Sutherland H, de Las HJ, Allan J, Jenuwein T, Bickmore WA (2003) Formation of facultative heterochromatin in the absence of HP1. EMBO J 22:5540–5550

    Article  CAS  PubMed  Google Scholar 

  • Goday C, Esteban MR (2001) Chromosome elimination in sciarid flies. BioEsssays 23:242–250

    Article  CAS  Google Scholar 

  • Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    Article  CAS  PubMed  Google Scholar 

  • Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Kampf K, Pigozzi MI, Arnold AP (2009) Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch. Chromosoma 118:527–536

    Article  CAS  PubMed  Google Scholar 

  • Ito T (2007) Role of histone modification in chromatin dynamics. J Biochem 141:609–614

    Article  CAS  PubMed  Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872

    CAS  PubMed  Google Scholar 

  • Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    CAS  Google Scholar 

  • Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Shi W, Fundele R, Singh PB (2004) Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci 117:2491–2501

    Article  CAS  PubMed  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kirschmann DA, Wallrath LL (2002) Does heterochromatin protein 1 always folow code? Proc Natl Acad Sci USA 99:1642–16469

    Google Scholar 

  • MacDonald VE, Howe LJ (2009) Histone acetylation: where to go and how to get there. Epigenetics 4:139–143

    Article  CAS  PubMed  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, Blanco-Rodriguez J, Jasin M, Keeney S, Bonner WM, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276

    Article  CAS  PubMed  Google Scholar 

  • Mateos-Langerak J, Brink MC, Luijsterburg MS, van der Kraan I, van Driel R, Verschure PJ (2007) Pericentromeric heterochromatin domains are maintained without accumulation of HP1. Mol Biol Cell 18:1464–1471

    Article  CAS  PubMed  Google Scholar 

  • Metzler-Guillemain C, Luciani J, Depetris D, Guichaoua MR, Mattei MG (2003) HP1beta and HP1gamma, but not HP1alpha, decorate the entire XY body during human male meiosis. Chromosome Res 11:73–81

    Article  CAS  PubMed  Google Scholar 

  • Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234

    Article  CAS  PubMed  Google Scholar 

  • Motzkus D, Singh PB, Hoyer-Fender S (1999) M31, a murine homolog of Drosophila HP1, is concentrated in the XY body during spermatogenesis. Cytogenet Cell Genet 86:83–88

    Article  CAS  PubMed  Google Scholar 

  • Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11:709–719

    Article  CAS  PubMed  Google Scholar 

  • Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P, Steward R, Lis JT, Allis CD, Reinberg D (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9(6):1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Pigozzi MI, Solari AJ (1998) Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata. Chromosome Res 7:105–113

    Article  Google Scholar 

  • Pigozzi MI, Solari AJ (2005) The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males. Chromosoma 114(6):403–409

    Article  CAS  PubMed  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411

    Article  CAS  PubMed  Google Scholar 

  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterocromatin. Genes Dev 18:1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  CAS  PubMed  Google Scholar 

  • Sims JK, Houston SI, Magazinnik T, Rice JC (2006) A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin. J Biol Chem 281:12760–12766

    Article  CAS  PubMed  Google Scholar 

  • Singh PB, Georgatos SD (2002) HP1: facts, open questions, and speculation. J Struct Biol 140:10–16

    Article  CAS  PubMed  Google Scholar 

  • Solari AJ (1974) The behavior of the XY pair in mammals. Int Rev Cytol 38:273–317

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Handel MA (2008) Regulation of the meiotic prophase I to metaphase I transition in mouse spermatocytes. Chromosoma 117:471–485

    Article  CAS  PubMed  Google Scholar 

  • Terada Y (2006) Aurora-B/AIM-1 regulates the dynamic behavior of HP1alpha at the G2-M transition. Mol Biol Cell 17:3232–3241

    Article  CAS  PubMed  Google Scholar 

  • Turner JM (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831

    Article  CAS  PubMed  Google Scholar 

  • Turner JM, Burgoyne PS, Singh PB (2001) M31 and macroH2a1.2 colocalise at the pseudoautosomal region during mouse meiosis. J Cell Sci 114:3367–3375

    CAS  PubMed  Google Scholar 

  • Turner JM, Aprelikova O, Xu X, Wang R, Kim S, Chandramouli GV, Barrett JC, Burgoyne PS, Deng CX (2004) BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14:2135–2142

    Article  CAS  PubMed  Google Scholar 

  • White MJD (1973) Animal Cytology and Evolution, Third Edition, Cambridge University Press

Download references

Acknowledgments

This work was supported with grant PIP 124 from the National Research Council (CONICET) and UBACyT M429 from the University of Buenos Aires to MIP and with grant BFU2008-02947-C02-02/BMC to CG from M.E.C of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Inés Pigozzi.

Additional information

Communicated by P. Cohen

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl Fig. 1

Double immunofluorescence labeling with γH2AX (red) and SMC3 (green) antibodies in male germ cells counterstained with DAPI (blue). (A-A’’) Spermatocyte at leptotene showing chromatin-wide staining with γH2AX. The chromatin of the GRC (arrow) is more brightly stained with DAPI and show weak labeling with γH2AX. (B-B´´) Late zygotene spermatocyte showing the persistence of γH2AX foci on unsynapsed axis (arrowheads). The GRC chromatin is devoid of labeling. C-C’’. The eliminated GRC (arrow) is strongly labeled with γH2AX. Bar indicates 10 µm (JPEG 87 kb)

High resolution (TIFF 6,954 kb)

Supplementary Figure Legend

(DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goday, C., Pigozzi, M.I. Heterochromatin and histone modifications in the germline-restricted chromosome of the zebra finch undergoing elimination during spermatogenesis. Chromosoma 119, 325–336 (2010). https://doi.org/10.1007/s00412-010-0260-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-010-0260-2

Keywords

Navigation