Skip to main content

Advertisement

Log in

SUMOylation is required for normal development of linear elements and wild-type meiotic recombination in Schizosaccharomyces pombe

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In the fission yeast, Schizosaccharomyces pombe, synaptonemal complexes (SCs) are not formed during meiotic prophase. However, structures resembling the axial elements of SCs, the so-called linear elements (LinEs) appear. By in situ immunostaining, we found Pmt3 (S. pombe's SUMO protein) transiently along LinEs, suggesting that SUMOylation of some component(s) of LinEs occurs during meiosis. Mutation of the SUMO ligase Pli1 caused aberrant LinE formation and reduced genetic recombination indicating a role for SUMOylation of LinEs for the regulation of meiotic recombination. Western blot analysis of TAP-tagged Rec10 demonstrated that there is a Pli1-dependent posttranslational modification of this protein, which is a major LinE component and a distant homolog of the SC protein Red1. Mass spectrometry (MS) analysis revealed that Rec10 is both phosphorylated and ubiquitylated, but no evidence for SUMOylation of Rec10 was found. These findings indicate that the regulation of LinE and Rec10 function is modulated by Pli1-dependent SUMOylation of LinE protein(s) which directly or indirectly regulates Rec10 modification. On the side, MS analysis confirmed the interaction of Rec10 with the known LinE components Rec25, Rec27, and Hop1 and identified the meiotically upregulated protein Mug20 as a novel putative LinE-associated protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal S, Roeder GS (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102:245–255

    Article  CAS  PubMed  Google Scholar 

  • Bähler J, Wyler T, Loidl J, Kohli J (1993) Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis. J Cell Biol 121:241–256

    Article  PubMed  Google Scholar 

  • Bähler J, Wu JQ, Longtine MS, Shah NG, Mckenzie A, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951

    Article  PubMed  Google Scholar 

  • Carballo JA, Johnson AL, Sedgwick SG, Cha RS (2008) Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132:758–770

    Article  CAS  PubMed  Google Scholar 

  • Cervantes MD, Farah JA, Smith GR (2000) Meiotic DNA breaks associated with recombination in S. pombe. Mol Cell 5:883–888

    Article  CAS  PubMed  Google Scholar 

  • Cheng C-H, Lo Y-H, Liang S-S, Ti S-C, Lin F-M, Yeh C-H, Huang H-Y, Wang T-F (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20:2067–2081

    Article  CAS  PubMed  Google Scholar 

  • Cheng C-H, Lin F-M, Lo Y-H, Wang T-F (2007) Tying SUMO modifications to dynamic behaviors of chromosomes during meiotic prophase of Saccharomyces cerevisiae. J Biomed Sci 14:481–490

    Article  CAS  PubMed  Google Scholar 

  • Davis L, Rozalén AE, Moreno S, Smith GR, Martín-Castellanos C (2008) Rec25 and Rec27, novel linear-element components, link cohesin to meiotic DNA breakage and recombination. Curr Biol 18:849–854

    Article  CAS  PubMed  Google Scholar 

  • Ding D-Q, Sakurai N, Katou Y, Itoh T, Shirahige K, Haraguchi T, Hiraoka Y (2006) Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. J Cell Biol 174:499–508

    Article  CAS  PubMed  Google Scholar 

  • Ellermeier C, Smith GR (2005) Cohesins are required for meiotic DNA breakage and recombination in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 102:10952–10957

    Article  CAS  PubMed  Google Scholar 

  • Forsburg SL, Rhind N (2006) Basic methods for fission yeast. Yeast 23:173–183

    Article  CAS  PubMed  Google Scholar 

  • Gregan J, Rabitsch PK, Sakem B, Csutak O, Latypov V, Lehmann E, Kohli J, Nasmyth K (2005) Novel genes required for meiotic chromosome segregation are identified by a high-throughput knockout screen in fission yeast. Curr Biol 15:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. Handbook of Genetics. pp. 395–446

  • Henderson KA, Keeney S (2004) Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc Natl Acad Sci USA 101:4519–4524

    Article  CAS  PubMed  Google Scholar 

  • Hirata A, Tanaka K (1982) Nuclear behavior during conjugation and meiosis in the fission yeast Schizosaccharomyces pombe. J Gen Appl Microbiol 28:263–274

    Article  Google Scholar 

  • Ho JCY, Warr NJ, Shimizu H, Watts FZ (2001) SUMO modification of Rad22, the Schizosaccharomyces pombe homologue of the recombination protein Rad52. Nucleic Acids Res 29:4179–4186

    Article  CAS  PubMed  Google Scholar 

  • Hooker GW, Roeder GS (2006) A role for SUMO in meiotic chromosome synapsis. Curr Biol 16:1238–1243

    Article  CAS  PubMed  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  CAS  PubMed  Google Scholar 

  • Klein F, Laroche T, Cardenas ME, Hofmann JFX, Schweizer D, Gasser SM (1992) Localization of RAP1 and topoisomerase II in nuclei and meiotic chromosomes of yeast. J Cell Biol 117:935–948

    Article  CAS  PubMed  Google Scholar 

  • Klein F, Mahr P, Galova M, Buonomo SBC, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    Article  CAS  PubMed  Google Scholar 

  • Koshiyama A, Hamada FN, Namekawa SH, Iwabata K, Sugawara H, Sakamoto A, Ishizaki T, Sakaguchi K (2006) Sumoylation of a meiosis-specific RecA homolog, Lim15/Dmc1, via interaction with the small ubiquitin-related modifier (SUMO)-conjugating enzyme Ubc9. FEBS J 273:4003–4012

    Article  CAS  PubMed  Google Scholar 

  • Loidl J (2006) S. pombe linear elements: the modest cousins of synaptonemal complexes. Chromosoma 115:260–271

    Article  PubMed  Google Scholar 

  • Lorenz A, Wells JL, Pryce DW, Novatchkova M, Eisenhaber F, McFarlane RJ, Loidl J (2004) S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. J Cell Sci 117:3343–3351

    Article  CAS  PubMed  Google Scholar 

  • Lorenz A, Estreicher A, Kohli J, Loidl J (2006) Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe. Chromosoma 115:330–340

    Article  CAS  PubMed  Google Scholar 

  • Martín-Castellanos C, Blanco M, Rozalén AE, Pérez-Hidalgo L, García AI, Conde F, Mata J, Ellermeier C, Davis L, San Segundo PA, Smith GR, Moreno S (2005) A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events. Curr Biol 15:2056–2062

    Article  PubMed  Google Scholar 

  • Mata J, Lyne R, Burns G, Bähler J (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nat Genet 32:143–147

    Article  CAS  PubMed  Google Scholar 

  • Molnar M, Bähler J, Sipiczki M, Kohli M (1995) The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141:61–73

    CAS  PubMed  Google Scholar 

  • Molnar M, Doll E, Yamamoto A, Hiraoka Y, Kohli J (2003) Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. J Cell Sci 116:1719–1731

    Article  CAS  PubMed  Google Scholar 

  • Munz P (1994) An analysis of interference in the fission yeast Schizosaccharomyces pombe. Genetics 137:701–707

    CAS  PubMed  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  CAS  PubMed  Google Scholar 

  • Niu H, Job E, Park C, Moazed D, Gygi SP, Hollingsworth NM (2007) Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis. Mol Cell Biol 27:5456–5467

    Article  CAS  PubMed  Google Scholar 

  • Octobre G, Lorenz A, Loidl J, Kohli J (2008) The Rad52 homologs Rad22 and Rti1 of Schizosaccharomyces pombe are not essential for meiotic interhomolog recombination, but are required for meiotic intrachromosomal recombination and mating-type-related DNA repair. Genetics 178:2399–2412

    Article  CAS  PubMed  Google Scholar 

  • Olson LW, Edén U, Mitani ME, Egel R (1978) Asynaptic meiosis in fission yeast? Hereditas 89:189–199

    Article  Google Scholar 

  • Osman F, Dixon J, Doe CL, Whitby MC (2003) Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell 12:761–774

    Article  CAS  PubMed  Google Scholar 

  • Pryce DW, McFarlane RJ (2009) The meiotic recombination hot spots of Schizosaccharomyces pombe. Genome Dyn Stab 5:1–13

    Article  CAS  Google Scholar 

  • Pryce DW, Lorenz A, Smirnova JB, Loidl J, McFarlane RJ (2005) Differential activation of M26-containing meiotic recombination hot spots in Schizosaccharomyces pombe. Genetics 170:95–106

    Article  CAS  PubMed  Google Scholar 

  • Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotech 17:1030–1032

    Article  CAS  Google Scholar 

  • Sacher M, Pfander B, Hoege C, Jentsch S (2006) Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nature Cell Biol 8:1284–1290

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Dhut S, Toda T (2005) New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe. Yeast 22:583–591

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Roguev A, Schaft D, Buchanan L, Habermann B, Sakalar C, Thomas H, Krogan NJ, Shevchenko A, Stewart AF (2008) Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 9:R167

    Article  PubMed  Google Scholar 

  • Spink K, Ho JCY, Tanaka K, Watts FZ, Chambers A (2005) The telomere-binding protein Taz1p as a target for modification by a SUMO-1 homologue in fission yeast. Biochem Genet 43:103–117

    Article  CAS  PubMed  Google Scholar 

  • Tasto JJ, Carnahan RH, McDonald WH, Gould KL (2001) Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe. Yeast 18:657–662

    Article  CAS  PubMed  Google Scholar 

  • Watts FZ (2007) The role of SUMO in chromosome segregation. Chromosoma 116:15–20

    Article  PubMed  Google Scholar 

  • Watts FZ, Skilton A, Ho JCY, Boyd LK, Trickey MAM, Gardner L, Ogi FX, Outwin EA (2007) The role of Schizosaccharomyces pombe SUMO ligases in genome stability. Biochem Soc Trans 35:1379–1384

    Article  CAS  PubMed  Google Scholar 

  • Wells JL, Pryce DW, Estreicher A, Loidl J, McFarlane RJ (2006) Linear element-independent meiotic recombination in Schizosaccharomyces pombe. Genetics 174:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The meiotic cDNA library was kindly provided by Hiroshi Nojima (Osaka University) and strains and plasmids by Kathy Gould (Vanderbilt University, Nashville), Alexander Lorenz (University of Oxford), Cristina Martín-Castellanos (Universidad de Salamanca), Gerald Smith (Fred Hutchinson Cancer Research Center, Seattle), Takashi Toda (Cancer Research UK, London), and Matthew Whitby (University of Oxford). We gratefully acknowledge the help of Lubos Cipak and the Ammerer lab (MFPL Vienna) with biochemical experiments and Maria Novatchkova (IMP Vienna) with bioinformatics, and we are grateful to Hubert Renauld (Vienna Medical University) for valuable suggestions. This work was supported by grant no. P18186 from the Austrian Science Fund (FWF) and by grant no. I031-B from the University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Loidl.

Additional information

Communicated by P. Cohen

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1

Strain list (DOC 61 kb)

Supplemental Fig. S2

Treatment with calf intestinal phosphatase (CIP) does not notably reduce the amount of high-molecular-weight Rec10 species, suggesting that the slower migrating forms of Rec10 are not (only) due to phosphorylation. As a positive control for CIP activity, the size reduction of S. cerevisiae Mks1 protein in the presence of CIP is shown. TCA protein extracts were prepared as described for whole-protein isolation (in the “Materials and methods” section) except that the TCA pellets were neutralized by washing with 2M Tris pH8.0 and resuspended in 10 mM Tris buffer pH8.0. The whole proteins were incubated with or without CIP (Roche) for 1 h at 37°C in the corresponding buffer supplied by manufacturer. The procedure was described by Sekito et al. (2002, Mol. Biol. Cell 13:795-804). S. cerevisiae Mks1 is known to be phosphorylated (Sekito et al. 2002; Ferreira Júnior et al. 2005; Gene 354:2-8PSY142). Cells were grown in YPD medium and 3× HA- and 12× His-tagged Mks1 was detected on the Western blot with anti-HA antiserum (DOC 134 kb)

Supplemental S3

(PPT 613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spirek, M., Estreicher, A., Csaszar, E. et al. SUMOylation is required for normal development of linear elements and wild-type meiotic recombination in Schizosaccharomyces pombe . Chromosoma 119, 59–72 (2010). https://doi.org/10.1007/s00412-009-0241-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0241-5

Keywords

Navigation