Skip to main content

Advertisement

Log in

Constitutive heterochromatin: a surprising variety of expressed sequences

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The organization of chromosomes into euchromatin and heterochromatin is amongst the most important and enigmatic aspects of genome evolution. Constitutive heterochromatin is a basic yet still poorly understood component of eukaryotic chromosomes, and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Although recent evidence indicates that the presence of transcribed genes in constitutive heterochromatin is a conserved trait that accompanies the evolution of eukaryotic genomes, the term heterochromatin is still considered by many as synonymous of gene silencing. In this paper, we comprehensively review data that provide a clearer picture of transcribed sequences within constitutive heterochromatin, with a special emphasis on Drosophila and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    PubMed  Google Scholar 

  • Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–781

    Google Scholar 

  • Aravin AA, Klenov MS, Vagin VV, Bantignies F, Cavalli G, Gvozdev VA (2004) Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line. Mol Cell Biol 24:6742–6750

    PubMed  Google Scholar 

  • Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655

    PubMed  Google Scholar 

  • Biamonti G (2004) Nuclear stress bodies: a heterochromatin affair? Nat Rev Mol Cell Biol 5:493–498

    PubMed  Google Scholar 

  • Biggs HW, Zavitz HK, Dikinson B, Van Der Straten A, Brunner D, Hafen E et al (1994) The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J 13:1628–1635

    PubMed  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330

    PubMed  Google Scholar 

  • Boyadjiev SA, South ST, Radford CL, Patel A, Zhang G, Hur DJ, Thomas GH, Gearhart JP, Stetten G (2005) A reciprocal translocation 46, XY, t(8;9)(p11.2;q13) in a bladder exstrophy patient disrupts CNTNAP3 and presents evidence of a pericentromeric duplication on chromosome 9. Genomics 85:622–629

    PubMed  Google Scholar 

  • Bozzetti MP, Massari S, Finelli P, Meggio F, Pinna LA, Boldyreff B et al (1995) The Ste locus, a component of the parasitic cry-Ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein kinase 2. PNAS 92:6067–6071

    PubMed  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    PubMed  Google Scholar 

  • Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322:1387–1392

    PubMed  Google Scholar 

  • Brosseau GE (1960) Genetic analysis of male fertility factors on the Y chromosomes of Drosophila melanogaster. Genetics 45:257–274

    PubMed  Google Scholar 

  • Brown SW (1966) Heterochromatin. Science 151:417–425

    PubMed  Google Scholar 

  • Brun ME, Ruault M, Ventura M, Roizes G, De Sario A (2003) Juxtacentromeric region of human chromosome 21: a boundary between centromeric heterochromatin and euchromatic chromosome arms. Gene 312:41–50

    PubMed  Google Scholar 

  • Caron M, Auclair M, Donadille B, Bereziat V, Guerci B, Laville M, Narbonne H, Bodemer C, Lascols O, Capeau J, Vigouroux C (2007) Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ 14:1759–1767

    PubMed  Google Scholar 

  • Carvalho AB, Dobo BA, Vibranovski MD, Clark AG (2001) Identification of five new genes on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci U S A 98:13225–13230

    PubMed  Google Scholar 

  • Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (2002) Selection for short introns in highly expressed genes. Nat Genet 31:415–418

    PubMed  Google Scholar 

  • Cenci G, Belloni G, Dimitri P (2003) 1(2) 41Aa, a heterochromatic gene of Drosophila melanogaster, is required for mitotic and meiotic chromosome condensation. Genet Res 81:15–24

    PubMed  Google Scholar 

  • Ciani L, Krylova O, Smalley MJ, Dale TC, Salinas PC (2004) A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. J Cell Biol 164:243–253

    PubMed  Google Scholar 

  • Clegg NJ, Honda BM, Whitehead IP, Grigliatti TA, Wakimoto B, Brock HW et al (1998) Suppressors of position-effect variegation in Drosophila melanogaster affect expression of the heterochromatic gene light in the absence of a chromosome rearrangement. Genome 41:495–503

    PubMed  Google Scholar 

  • Columbaro M, Capanni C, Mattioli E, Novelli G, Parnaik VK, Squarzoni S, Maraldi NM, Lattanzi G (2005) Rescue of heterochromatin organization in Hutchinson–Gilford progeria by drug treatment. Cell Mol Life Sci 62:2669–2678

    PubMed  Google Scholar 

  • Corradini N, Rossi F, Vernì F, Dimitri P (2003) FISH analysis of Drosophila heterochromatin using BACs and P-elements. Chromosoma 112:26–37

    PubMed  Google Scholar 

  • Coulthard AB, Eberl DF, Sharp CB, Hilliker AJ (2003) Genetic analysis of the second chromosome centromeric heterochromatin of Drosophila melanogaster. Genome 46:343–352

    PubMed  Google Scholar 

  • Cryderman DE, Grade SK, Li Y, Fanti L, Pimpinelli S, Wallrath LL (2005) Role of Drosophila HP1 in euchromatic gene expression. Dev Dyn 232:767–774

    PubMed  Google Scholar 

  • Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel JA, Sachidanandam R, Hannon GJ, Brennecke J (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802

    PubMed  Google Scholar 

  • Desset S, Meignin C, Dastugue B, Vaury C (2003) COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. Genetics 164:501–509

    PubMed  Google Scholar 

  • De Wit E, Greil F, van Steensel B (2005) Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res 15:1265–1273

    PubMed  Google Scholar 

  • De Wit E, Greil F, van Steensel B (2007) High-resolution mapping reveals links of HP1 with active and inactive chromatin components. PLoS Genet 2007:346–357

    Google Scholar 

  • Dernburg AF, Sedat JW, Hawley RS (1996) Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86:135–146

    PubMed  Google Scholar 

  • Devlin RH, Bingham B, Wakimoto BT (1990a) The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 125:129–140

    PubMed  Google Scholar 

  • Devlin RH, Holm DG, Morin KR, Honda BM (1990b) Identifying single-copy DNA sequence associated with the expression of a heterochromatic gene, the light locus of Drosophila melanogaster. Genome 33:405–415

    PubMed  Google Scholar 

  • Diekwisch TG, Marches F, Williams A, Luan X (1999) Cloning, gene expression, and characterization of CP27, a novel gene in mouse embryogenesis. Gene 235:19–30

    PubMed  Google Scholar 

  • Dimitri P (1991) Cytogenetic analysis of the second chromosome heterochromatin of Drosophila melanogaster. Genetics 127:553–564

    PubMed  Google Scholar 

  • Dimitri P, Junakovic N (1999) Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet 15:123–124

    PubMed  Google Scholar 

  • Dimitri P, Arcà B, Berghella L, Mei E (1997) High genetic instability of heterochromatin after transposition of the LINE-like I factor in Drosophila melanogaster. Proc Natl Acad Sci U S A 94:8052–8057

    PubMed  Google Scholar 

  • Dimitri P, Junakovic N, Arcà B (2003) Colonization of heterochromatic genes by transposable elements in Drosophila. Mol Biol Evol 20:503–512

    PubMed  Google Scholar 

  • Dimitri P, Corradini N, Rossi F, Vernì F (2005a) The paradox of functional heterochromatin. Bioessays 27:29–41

    PubMed  Google Scholar 

  • Dimitri P, Vernì F, Mei E, Rossi F, Corradini N (2005b) Transposable elements as artisans of the heterochromatic genome. Cytogenet Genome Res 110:165–172

    PubMed  Google Scholar 

  • Eberl D, Duyf BJ, Hilliker AH (1993) The role of heterochromatin in the expression of a heterochromatic gene, the rolled gene of Drosophila melanogaster. Genetics 134:277–292

    PubMed  Google Scholar 

  • Eichler EE, Lu F, Shen Y, Antonacci R, Jurecic V, Doggett NA, Moyzis RK, Baldini A, Gibbs RA, Nelson DL (1996) Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum Mol Genet 5:899–912

    PubMed  Google Scholar 

  • Eissenberg JC, Hilliker AJ (2000) Versatility of conviction: heterochromatin as both repressor and an activator of transcription. Genetica 109:19–24

    PubMed  Google Scholar 

  • Elgin SCR (1996) Heterochromatin and gene regulation in Drosophila. Curr Opin Genet Dev 6:193–200

    PubMed  Google Scholar 

  • Fanti L, Perrini B, Piacentini L, Berloco M, Marchetti E, Palumbo G, Pimpinelli S (2008) The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma 117:25–39

    PubMed  Google Scholar 

  • Fitzpatrick KA, Sinclair DA, Schulze SR, Syrzycka M, Honda BM (2005) A genetic and molecular profile of third chromosome centric heterochromatin in Drosophila melanogaster. Genome 48:571–584

    PubMed  Google Scholar 

  • Fly Base 2009 (http://flybase.org/)

  • Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki TY et al (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–781

    PubMed  Google Scholar 

  • Gatti M, Pimpinelli S (1983) Cytological and genetical analysis of the Y chromosome of Drosophila melanogaster. Chromosoma 88:349–373

    Google Scholar 

  • Gatti M, Pimpinelli S (1992) Functional elements in Drosophila melanogaster heterochromatin. Annu Rev Genet 26:239–275

    PubMed  Google Scholar 

  • Gause M, Eissenberg JC, Macrae AF, Dorsett M, Misulovin Z, Dorsett D (2006) Nipped-A, the Tra1/TRRAP subunit of the Drosophila SAGA and Tip60 complexes, has multiple roles in Notch signaling during wing development. Mol Cell Biol 26:2347–2359

    PubMed  Google Scholar 

  • Gepner J, Hays TS (1993) A fertility region on the Y chromosome of Drosophila melanogaster encodes a dynein microtubule motor. Proc Natl Acad Sci U S A 90:11132–11136

    PubMed  Google Scholar 

  • Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320:1077–1081

    PubMed  Google Scholar 

  • Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter N, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118:555–566

    PubMed  Google Scholar 

  • Greil F, van der Kraan I, Delrow J, Smothers JF, de Wit E, Bussemaker HJ et al (2003) Distinct HP1 and Su(var) 3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev 17:2825–2838

    PubMed  Google Scholar 

  • Grunau C, Sanchez C, Ehrlich M, van der Bruggen P, Hindermann W, Rodriguez C, Krieger S, Dubeau L, Fiala E, De Sario A (2005) Frequent DNA hypomethylation of human juxtacentromeric BAGE loci in cancer. Genes Chromosomes Cancer 43:11–24

    PubMed  Google Scholar 

  • Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237

    PubMed  Google Scholar 

  • Heitz E (1928) Das heterochromatin der Moose. Jb Wiss Bot 69:762–818

    Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    PubMed  Google Scholar 

  • Hilliker AJ (1976) Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency mapping of EMS-induced lethal complementation groups. Genetics 83:765–782

    PubMed  Google Scholar 

  • Hilliker AJ, Appels R, Schalet A (1980) The genetic analysis of D. melanogaster heterochromatin. Cell 21:607–619

    PubMed  Google Scholar 

  • Horvath JE, Schwartz S, Eichler EE (2000) The mosaic structure of human pericentromeric DNA: a strategy for characterizing complex regions of the human genome. Genome Res 10:839–852

    PubMed  Google Scholar 

  • Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A, kaminker JS et al (2002) Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biology 3:research0085.1–0085.16

    Google Scholar 

  • Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise E, Wan KH, Park S, Mendez-Lago M, Rossi F, Villasante A, Dimitri P, Karpen GH, Celniker SE (2007) Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316:1625–1628

    PubMed  Google Scholar 

  • Huisinga KL, Elgin SC (2009) Small RNA- directed heterochromatin formation in the context of development: what flies might learn from fission yeast. Biochim Biophys 1789:3–16

    Google Scholar 

  • Huisinga KL, Brower-Toland B, Elgin SC (2006) The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115:110–122

    PubMed  Google Scholar 

  • Inoue YH, Glover DM (1998) Involvement of the rolled/MAP kinase gene in Drosophila mitosis: interaction between genes for the MAP kinase cascade and abnormal spindle. Mol Gen Genet 258:334–341

    PubMed  Google Scholar 

  • John B (1988) The biology of heterochromatin. In: Verma RS (ed) Heterochromatin: molecular and structural aspects. Cambridge University Press, Cambridge, pp 1–128

    Google Scholar 

  • Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc’h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33

    PubMed  Google Scholar 

  • Karpen GH, Le MG, Le H (1996) Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273:118–122

    PubMed  Google Scholar 

  • Koryakov DE, Zhimulev IF, Dimitri P (2002) Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster. Genetics 160:509–517

    PubMed  Google Scholar 

  • Krantz ID, McCallum J, De Scipio C, Kaur M, Gillis LA, Yaeger D et al (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36:631–635

    PubMed  Google Scholar 

  • Kurek RA, Reugels M, Lammermann U, Buenemann H (2000) Molecular aspects of intron evolution in dynein encoding mega-genes on the heterochromatic Y chromosome of Drosophila sp. Genetica 109:113–123

    PubMed  Google Scholar 

  • Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA (2006) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci U S A 103:4186–4191

    PubMed  Google Scholar 

  • Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378

    PubMed  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AHA, Braunschweig U, Perez-Burgos L, Kubicek S et al (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13:1192–1200

    PubMed  Google Scholar 

  • Litvak KJ (1984) Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107:611–634

    Google Scholar 

  • Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134:1149–1174

    PubMed  Google Scholar 

  • Lu BY, Emtage PC, Duyf BJ, Hilliker AJ, Eissenberg JC (2000) Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics 155:699–708

    PubMed  Google Scholar 

  • Marchant GE, Holm DG (1988) Genetic analysis of the heterochromatin of chromosome 3 in Drosophila melanogaster. II. Vital loci identified through EMS mutagenesis. Genetics 120:519–532

    PubMed  Google Scholar 

  • Marygold SJ, Coelho CM, Leevers SJ (2005) Genetic analysis of RpL38 and RpL5, two minute genes located in the centric heterochromatin of chromosome 2 of Drosophila melanogaster. Genetics 169:683–695

    PubMed  Google Scholar 

  • Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S, Fay JC, Eisen MB, Pirrotta V, Biggin MD, Dorsett D (2008) Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117:89–102

    PubMed  Google Scholar 

  • Moritz KB, Roth GE (1976) Complexity of germline and somatic DNA in Ascaris. Nature 259:55–57

    PubMed  Google Scholar 

  • Mudge JM, Jackson MS (2005) Evolutionary implications of pericentromeric gene expression in humans. Cytogenet Genome Res 108:47–57

    PubMed  Google Scholar 

  • Myster SH, Wang F, Cavallo R, Christian W, Bhotika S, Anderson CT, Peifer M (2004) Genetic and bioinformatic analysis of 41C and the 2R heterochromatin of Drosophila melanogaster: a window on the heterochromatin–euchromatin junction. Genetics 166:807–822

    PubMed  Google Scholar 

  • Neglia M, Bertoni L, Zoli W, Giulotto E (2003) Amplification of the pericentromeric region of chromosome 1 in a newly established colon carcinoma cell line. Cancer Genet Cytogenet 142:99–106

    PubMed  Google Scholar 

  • Palumbo G, Berloco M, Fanti L, Bozzetti MP, Massari S, Caizzi R, Caggese C, Spinelli L, Pimpinelli S (1994) Interaction systems between heterochromatin and euchromatin in Drosophila melanogaster. Genetica 94:267–74

    PubMed  Google Scholar 

  • Parks S, Wieschaus E (1991) The Drosophila gastrulation gene concertina encodes a Ga-like protein. Cell 64:447–458

    PubMed  Google Scholar 

  • Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14:783–791

    PubMed  Google Scholar 

  • Peterson DG, Pearson WR, Stack SM (1998) Characterization of the tomato (Lycopersicon esculentum) genome using in vitro and in situ DNA reassociation. Genome 41:346–356

    Google Scholar 

  • Pimpinelli S, Dimitri P (1989) Cytogenetic analysis of segregation distortion in drosophila melanogaster: the cytological organization of the responder (Rsp) locus. Genetics 121:765–772

    PubMed  Google Scholar 

  • Pimpinelli S, Bonaccorsi S, Gatti M, Sandler L (1985) The peculiar genetic organization of Drosophila heterochromatin. Trends Genet 2:17–20

    Google Scholar 

  • Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E et al (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci U S A 92:3804–3808

    PubMed  Google Scholar 

  • Plath K, Mlynarczyk-Evans S, Nusinov DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36:233–278

    PubMed  Google Scholar 

  • Prud’homme N, Gans M, Masson M, Terzian C, Bucheton A (1995) Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139:697–711

    PubMed  Google Scholar 

  • Rasoly RS, Robbins LG (1991) Rex and suppressor of Rex arerepeated neomorphic loci in the Drosophila melanogaster ribosomal DNA. Genetics 129:119–132

    Google Scholar 

  • Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831

    PubMed  Google Scholar 

  • Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–11125

    PubMed  Google Scholar 

  • Ritossa FM, Spiegelman S (1965) Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. PNAS 53:737–745

    PubMed  Google Scholar 

  • Rizzi N, Denegri M, Chiodi I, Corioni M, Valgardsdottir R, Cobianchi F, Riva S, Biamonti G (2004) Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15:543–551

    PubMed  Google Scholar 

  • Rollins RA, Morcillo P, Dorsett D (1999) Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152:577–593

    PubMed  Google Scholar 

  • Rossi F, Moschetti R, Caizzi R, Corradini N, Dimitri P (2007) Cytogenetic and molecular characterization of heterochromatin gene models in Drosophila melanogaster. Genetics 175:595–607

    PubMed  Google Scholar 

  • Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat Med 11:440–445

    PubMed  Google Scholar 

  • She X, Horvath JE, Jiang Z, Liu G, Furey TS, Christ L, Clark R, Graves T, Gulden CL, Alkan C et al (2004) The structure and evolution of centromeric transition regions within the human genome. Nature 430:857–864

    PubMed  Google Scholar 

  • Schulze SR, Sinclair DA, Fitzpatrick KA, Honda BM (2005) A genetic and molecular characterization of two proximal heterochromatic genes on chromosome 3 of Drosophila melanogaster. Genetics 169:2165–2177

    PubMed  Google Scholar 

  • Shimada Y, Yonemura S, Ohkura H, Strutt D, Uemura T (2006) Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev Cell 10:209–222

    PubMed  Google Scholar 

  • Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS et al (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103:8703–8708

    PubMed  Google Scholar 

  • Slawson EE, Shaffer CD, Malone CD, Leung W, Kellmann E, Shevchek RB, Craig CA, Bloom SM, 2nd Bogenpohl J, Dee J, Morimoto ET, Myoung J, Nett AS, Ozsolak F, Tittiger ME, Zeug A, Pardue ML, Buhler J, Mardis ER, Elgin SC (2006) Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains. Genome Biol 7:R15

    PubMed  Google Scholar 

  • Smith CD, Yandell M, Edgar RC, Kennedy C, Carlson J et al (2005) The Drosophila Heterochromatin Genome Project (DHGP): genes and repeat annotation. Seventh International Conference on Drosophila Heterochromatin. Gubbio, Italy

  • Smith CD, Shu S, Mungall CJ, Karpen GH (2007) The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 316:1586–1591

    PubMed  Google Scholar 

  • Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18:74–82

    PubMed  Google Scholar 

  • Stewart CL, Roux KJ, Burke B (2007) Blurring the boundary: the nuclear envelope extends its reach. Science 318:1408–1412

    PubMed  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    PubMed  Google Scholar 

  • Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36:636–641

    PubMed  Google Scholar 

  • Tulin A, Stewart D, Spradling AC (2002) The Drosophila heterochromatic gene encoding poly (ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 16:2108–2119

    PubMed  Google Scholar 

  • Valgardsdottir R, Chiodi I, Giordano M, Rossi A, Bazzini S, Ghigna C, Riva S, Biamonti G (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res 36:423–434

    PubMed  Google Scholar 

  • Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676

    PubMed  Google Scholar 

  • Villasante A, Mendéz-Lago M, Abad JP, Montejo de Garcìni E (2007) The birth of the centromere. Cell Cycle 6:2872–2876

    PubMed  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Mrtienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    PubMed  Google Scholar 

  • Wakimoto BT, Hearn MG (1990) The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of D. melanogaster. Genetics 125:141–154

    PubMed  Google Scholar 

  • Warner TS, Sinclair DA, Fitzpatrick KA, Singh M, Devlin RH, Honda BM (1998) The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking. Genome 41:236–243

    PubMed  Google Scholar 

  • Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29:577–605

    PubMed  Google Scholar 

  • Williams SM, Robbins LG (1992) Molecular genetic analysis of Drosophila rRNA arrays. Trends Genet 8:335–340

    PubMed  Google Scholar 

  • Yasuhara JC, Wakimoto BT (2006) Oxymoron no more: the expanding world of heterochromatin. Trends Genet 22:330–338

    PubMed  Google Scholar 

  • Yasuhara JC, Wakimoto BT (2008) Molecular landscape of modified histones in Drosophila heterochromatic genes and euchromatin–heterochromatin transition zones. PLoS Genet 4:159–172

    Google Scholar 

  • Yasuhara JC, Marchetti M, Fanti L, Pimpinelli S, Wakimoto BT (2003) A strategy for mapping the heterochromatin of chromosome 2 of Drosophila melanogaster. Genetica 117:217–226

    PubMed  Google Scholar 

  • Yasuhara JC, DeCrease CH, Wakimoto BT (2005) Evolution of heterochromatic genes of Drosophila. Proc Natl Acad Sci U S A 102:10958–10963

    PubMed  Google Scholar 

  • Yin H, Lin H (2007) An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450:304–308

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Patrizia Lavia for critical reading of the manuscript and to Roger Hoskins and DHGP for sharing informations on heterochromatin sequence and gene annotation. We also wish to thank three anonymous referees for helpful comments and suggestions. The P. Dimitri laboratory was supported by grants from Istituto Pasteur-Fondazione Cenci Bolognetti and National Institute of Health. G.Biamonti was supported by grants from AIRC and Cariplo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizio Dimitri.

Additional information

Communicated by S. Pimpinelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitri, P., Caizzi, R., Giordano, E. et al. Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma 118, 419–435 (2009). https://doi.org/10.1007/s00412-009-0211-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0211-y

Keywords

Navigation