Skip to main content
Log in

Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Little is known of the dynamics of centromeric DNA in polyploid plants. We report the sequences of two centromere-associated bacterial artificial chromosome clones from a Triticum boeoticum library. Both autonomous and non-autonomous wheat centromeric retrotransposons (CRWs) were identified, both being closely associated with the centromeres of wheat. Fiber-fluorescence in situ hybridization and chromatin immunoprecipitation analysis showed that wheat centromeric retrotransposons (CRWs) represent a dominant component of the wheat centromere and are associated with centromere function. CRW copy number showed variation among different genomes: the D genome chromosomes contained fewer copies than either the A or B genome chromosomes. The frequency of lengthy continuous CRW arrays was higher than that in either rice or maize. The dynamics of CRWs and other retrotransposons at centromeric and pericentromeric regions during diploid speciation and polyploidization of wheat and its related species are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aragón-Alcaide L, Miller T, Schwatzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261–268

    Article  PubMed  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Zhang X, Xia G, Jia J (2002) Construction and characterization of a bacterial artificial chromosome library for Triticum boeoticum. Acta Bot Sinica 44:451–456

    CAS  Google Scholar 

  • Cheng ZJ, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672

    PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang GL, Pamela C, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA 95:8135–8140

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitutions rate comparisons between grasses and palm: synonymous rate differences at the nucleargene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    Article  PubMed  CAS  Google Scholar 

  • Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol 135:459–470

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Kettler GC, Preuss D (2006) Dynamic evolution at pericentromeres. Genome Res 16:355–364

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Schubert I (2003) DNA and proteins of plant centromeres. Curr Opin Plant Biol 6:554–560

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

    Article  PubMed  CAS  Google Scholar 

  • Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Nasuda S, Endo TR (2004) A direct repeat sequence associated with the centromeric retrotransposons in wheat. Genome 47:747–756

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Miura A, Takashima K, Kakutani T (2007) Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana. Mol Genet Genomics 277:23–30

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (1994) Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosome Res 2:59–64

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Nasuda S, Dong F, Scherrer CW, Woo SS, Wingi RA, Gill BS, Ward DC (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 18:570–575

    Article  CAS  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) Large retrotransposon derivatives: abundant, conserved but non-autonomous retroelements of barley and related genomes. Genetics 166:1437–1450

    Article  PubMed  CAS  Google Scholar 

  • Kawabe A, Charlesworth D (2007) Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata. J Mol Evol 64:237–247

    Article  PubMed  CAS  Google Scholar 

  • Kishii M, Tsujimoto H (2002) Genus-specific localization of the TaiI family of tandem-repetitive sequences in either the centromeric or subtelomeric regions in Triticeae species (Poaceae) and its evolution in wheat. Genome 45:946–955

    Article  PubMed  CAS  Google Scholar 

  • Kishii M, Nagaki K, Tsujimoto H (2001) A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromosome Res 9:417–428

    Article  PubMed  CAS  Google Scholar 

  • Kong XY, Gu YQ, You FM, Dubcovsky J, Anderson OD (2004) Dynamics of the evolution orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Plant Mol Biol 54:55–69

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Langdon T, Seago C, Mende M, Leggett M, Thomas H, Forster JW, Thomas H, Jones RN, Jenkins G (2000) Retrotransposon evolution in diverse plant genomes. Genetics 156:313–325

    PubMed  CAS  Google Scholar 

  • Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    Article  PubMed  CAS  Google Scholar 

  • Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593

    Article  PubMed  CAS  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    Article  PubMed  CAS  Google Scholar 

  • Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 47:173–183

    Google Scholar 

  • Liu Z, Yue W, Dong YS, Zhang XY (2006) Identification and preliminary analysis of several centromere-associated bacterial artificial chromosome clones from a diploid wheat (Triticum boeoticum Boiss.) library. J Integrat Plant Biol 48:348–358

    Article  CAS  Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007a) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007b) Evolutionary history and positional shift of a rice centromere. Genetics 177:1217–1220

    Article  PubMed  CAS  Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Rec Genet Soc Am 13:26–27

    Google Scholar 

  • McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640

    PubMed  CAS  Google Scholar 

  • Miller JT, Dong F, Jackson SA, Song J, Jiang J (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150:1615–1623

    PubMed  CAS  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Murata M (2005) Characteriztion of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003a) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    PubMed  CAS  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003b) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    Article  PubMed  CAS  Google Scholar 

  • Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728

    Article  PubMed  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77:253–255

    CAS  Google Scholar 

  • Reed KC, Mann DA (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 13:7202–7221

    Article  Google Scholar 

  • Saffery R, Sumer H, Hassan S, Wong LH, Craig JM, Todokoro K, Anderson M, Stafford A, Choo KH (2003) Transcription within a functional human centromere. Mol Cell 12:509–516

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel PJ, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am. Funct Integr Genomics 2:70–80

    Article  PubMed  CAS  Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    Article  CAS  Google Scholar 

  • Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J (2005) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133

    Article  CAS  Google Scholar 

  • Zhang XY, Dong YS, Wang RR-C (1996) Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis and RAPD. Genome 39:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Li W, Friebe B, Gill BS (2004a) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Li W, Fellers J, Friebe B, Gill BS (2004b) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299

    Article  PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. J. Jiang (University of Wisconsin, Madison, USA) for providing the RCS1 plasmid and valuable comments on the manuscript, to Dr. S. Henikoff (Fred Hutchinson Cancer Research Center) for the rice CENH3 antibody, to Dr. C. Feuillet (INRA, Clermont-Ferrand, France) for providing the 3B centromere-associated BAC clones, to J. Wu (ICS, CAAS) for help with the BAC sequencing and bioinformatic analysis, and to Z. Cheng and L. Mao (ICS, CAAS) for valuable discussion. They also thank www.smartenglish.co.uk for linguistic advice in the preparation of this manuscript. This research was supported by the Natural Science Foundation of China (39870494, 30771208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Jin or Xueyong Zhang.

Additional information

Communicated by I. Schubert

Zhao Liu and Wei Yue made an equal contribution to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material

Fig. S1

CRW LTRs in BAC clone TbBAC30 (5→3′ the direction of the LTR, asterisks the inverted repeat at the terminals of the LTR) (PPT 36.0 KB)

Fig. S2

Chromosome localization of the CR2–1 sequence (part of the LTR region of an autonomous CRW) in hexaploid wheat. a Biotin-labeled probe (red). b Probed with digoxingenin-11-dUTP-labeled pAs1 (yellow/green) and biotin-16-dUTP-labeled pSc119.2 (red). The signals on the A genome centromeres are stronger than those on the B or D genome centromeres. Bars 10 μm (GIF 4.94 MB)

High resolution image file (GIF 30.1 kb)

Fig. S3

In situ hybridization in hexaploid wheat cv. Chinese Spring with amplicons derived from A. speltoides (a) or A. tauschii (b) and centromeric-associated BAC clones derived either from cv. Chinese Spring chromosome 3B (c) or A. tauschii (d) as probes. LTRm primers were used for PCR (listed in Table S4). The BAC used in c was 3B-078-D03 (centromeric signals: green) and in d was 5C01 (centromeric signals: red). Digoxingenin-11-dUTP-labeled pAs1 (yellow/green) and biotin-16-dUTP-labeled pSc119.2 (red) were used simultaneously to distinguish the chromosomes of the B and D genomes. The signals on D genome centromeres are weaker than those on A or B genome centromeres. Bars 10 μm (GIF 8.45 MB)

High resolution image file (GIF 60.0 kb)

Fig. S4

Representative quantitative real-time PCR as used in ChIP analysis, for determining the relative fold enrichment (RFE) of CENH3-associated sequences in the bound fraction over the mock control. All samples showed obvious enrichment of precipitated DNA, except for Erika and 5.8S. The red and green curves correspond to the two mock DNA samples (pellet), whereas the blue and yellow curves correspond to the two bound DNAs (pellet). (a) 365–1c, (b) 5′-UTR, (c) gag, (d) RT, (e) INT, (f) non-autonomous CRW LTR, (g) Erika, (h) 5.8S (CK). The cycle threshold (CT) was taken with the baseline of fluorescence intensity being manually set at a value between 0.01 and 0.05. (PPT 103 KB)

Fig. S5

Southern hybridization profiles of Triticeae species, following probing with three retrotransposon sequences. (a) Wgel_TbBAC5–1p, (b) Erika_TbBAC5–1, (c) Sukkula_TbBAC5–1 with the probes of C04–1, G10, and Sukkula (see Fig. 1a and Table S4). Genome symbols are used to identify the lanes after gel electrophoresis (Cu: A. umbrellulata, Au: T. urartu, Ab: T. monococcum subsp. aegilopoides, S: A. speltoides var. ligustica, D: A. tauschii, AB: T. orientale, AG: T. araraticum, ABD: T. aestivum). The genomic DNA was fully digested by HindIII (a, b) or BamHI (c). The signals in the five species containing the A genome are significantly stronger than those in the other species. The polyploid wheats thus presumably inherited the hybridization patterns of their diploid ancestors. (PPt 241 KB)

Fig. S6

In situ hybridization in four Triticum species, generated by probing with Erika_TbBAC5–1. (a) T. urartu, (b) T. dicoccoides, (c) T. araraticum, (d) T. aestivum. The probe sub-clone G10, encompassing a partial LTR and a partial coding region of Erika_TbBAC5–1 (marked in Fig. 1a), was labeled with digoxingenin-11-dUTP and detected with anti-digoxigenin-fluorescein (yellow/green). Chromosomes were counter-stained with propidium iodide (PI) in Vectashield for anti-digoxigenin-fluorescein detection. Dispersed signals were distributed on the arms of the A genome chromosomes and almost absent in the centromeres, showing that Erika_TbBAC5–1 is non-centromeric sequence-specific (or abundant) in the A genome (arrows in b-d translocations between the A and B or G genome chromosomes). Bars 10 μm (GIF 76.6 KB)

High resolution image file (GIF 15.6 MB)

Table S1

Non-centromere-specific retrotransposons present in BAC clone TbBAC30 (DOC 33.0 KB)

Table S2

Incomplete CRWs present in BAC clones TbBAC5 and TbBAC30 (DOC 32.5 KB)

Table S3

The CRW, PrBS (primer-binding site), and PPT (polypurine tract) present in BAC clones TbBAC5 and TbBAC30 (DOC 31.5 KB)

Table S4

Probes used for Southern hybridization, FISH, and fiber-FISH (DOC 64.0 KB)

Table S5

Primers used for ChIP analyses (no a non-autonomous) (DOC 38.0 KB)

Table S6

Quantification of real-time PCR products in ChIP analyses (no a non-autonomous) (DOC 45.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Yue, W., Li, D. et al. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117, 445–456 (2008). https://doi.org/10.1007/s00412-008-0161-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-008-0161-9

Keywords

Navigation