Skip to main content
Log in

Effects of telomere length in Drosophila melanogaster on life span, fecundity, and fertility

Chromosoma Aims and scope Submit manuscript

Abstract

Chromosome length in Drosophila is maintained by targeted transposition of three non-long terminal repeat retrotransposons, HeT-A, TART, and TAHRE, to the chromosome ends. The length and composition of these retrotransposon arrays can vary significantly between chromosome tips and between fly stocks, but the significance and consequences of these length differences are not understood. A dominant genetic factor, Tel, has been described, which causes a severalfold elongation of the retrotransposon arrays at all telomeres. We used this strain to assess possible affects of extended telomeres on the organism. While we found no effect on life span of the adults, we could demonstrate a correlation between long telomeres and reduced fertility and fecundity in individual females, which is also reflected in abnormal oocyte development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abad JP, de Pablos B, Osoegawa K, de Jong PJ, Martin-Gallardo A, Villasante A (2004) Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at the telomeres. Mol Biol Evol 21:1613–1619

    Article  PubMed  CAS  Google Scholar 

  • Ahmed S, Sheng H, Niu LM, Henderson E (1998) Tetrahymena mutants with short telomeres. Genetics 150:643–650

    PubMed  CAS  Google Scholar 

  • Aviv A, Levy D, Mangel M (2003) Growth, telomere dynamics and successful and unsuccessful human aging. Mech Ageing Dev 124:829–837

    Article  PubMed  CAS  Google Scholar 

  • Biessmann H, Champion LE, O’Hair M, Ikenaga K, Kasravi B, Mason JM (1992) Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. EMBO J 11:4459–4469

    PubMed  CAS  Google Scholar 

  • Biessmann H, Walter MF, Mason JM (1997) Drosophila telomere elongation. Ciba Found Symp 211:53–67

    PubMed  CAS  Google Scholar 

  • Biessmann H, Prasad S, Walter MF, Mason JM (2005) Euchromatic and heterochromatic domains at Drosophila telomeres. Biochem Cell Biol 83:477–485

    Article  PubMed  CAS  Google Scholar 

  • Cenci G, Ciapponi L, Gatti M (2005) The mechanism of telomere protection: a comparison between Drosophila and humans. Chromosoma 114:135–145

    Article  PubMed  CAS  Google Scholar 

  • Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553–563

    Article  PubMed  CAS  Google Scholar 

  • Clare ML, Luckinbill LS (1985) The effects of gene-environment interaction on the expression of longevity. Heredity 55:19–26

    PubMed  Google Scholar 

  • Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385:744–747

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA 87:9923–9927

    Article  PubMed  CAS  Google Scholar 

  • Fanti L, Giovinazzo G, Berloco M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2:527–538

    Article  PubMed  CAS  Google Scholar 

  • Golubovsky MD, Konev AY, Walter MF, Biessmann H, Mason JM (2001) Terminal retrotransposons activate a subtelomeric white transgene at the 2L telomere in Drosophila. Genetics 158:1111–1123

    PubMed  CAS  Google Scholar 

  • Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B, Petes TD (1995) TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82:823–829

    Article  PubMed  CAS  Google Scholar 

  • Greider CW (1996) Telomere length regulation. Annu Rev Biochem 65:337–365

    Article  PubMed  CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  PubMed  CAS  Google Scholar 

  • Harley CB (2002) Telomerase is not an oncogene. Oncogene 21:494–502

    Article  PubMed  CAS  Google Scholar 

  • Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW, Blasco MA (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18:2950–2960

    Article  PubMed  CAS  Google Scholar 

  • Joeng KS, Song EJ, Lee KJ, Lee J (2004) Long lifespan in worms with long telomeric DNA. Nat Genet 36:607–611

    Article  PubMed  CAS  Google Scholar 

  • Kahn T, Savitsky M, Georgiev P (2000) Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol 20:7634–7642

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  PubMed  CAS  Google Scholar 

  • Krauskopf A, Blackburn EH (1996) Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats. Nature 383:354–357

    Article  PubMed  CAS  Google Scholar 

  • Kyrion G, Boakye KA, Lustig AJ (1992) C-Terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol Cell Biol 12:5159–5173

    PubMed  CAS  Google Scholar 

  • Larson DD, Spangler EA, Blackburn EH (1987) Dynamics of telomere length variation in Tetrahymena thermophila. Cell 50:477–483

    Article  PubMed  CAS  Google Scholar 

  • Lee HW, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, Depinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574

    Article  PubMed  CAS  Google Scholar 

  • Mason JM, Biessmann H (1995) The unusual telomeres of Drosophila. Trends Genet 11:58–62

    Article  PubMed  CAS  Google Scholar 

  • Melnikova L, Georgiev P (2002) Enhancer of terminal gene conversion, a new mutation in Drosophila melanogaster that induces telomere elongation by gene conversion. Genetics 162:1301–1312

    PubMed  CAS  Google Scholar 

  • Melnikova L, Georgiev P (2005) Drosophila telomeres: the non-telomerase alternative. Chromosome Res 13:431–441

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37:485–511

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL (2005) Two retrotransposons maintain telomeres in Drosophila. Chromosome Res 13:443–453

    Article  PubMed  CAS  Google Scholar 

  • Perrini B, Piacentini L, Fanti L, Altieri F, Chichiarelli S, Berloco M, Turano C, Ferraro A, Pimpinelli S (2004) HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell 15:467–476

    Article  PubMed  CAS  Google Scholar 

  • Raices M, Maruyama H, Dillin A, Karlseder J (2005) Uncoupling of longevity and telomere length in C. elegans. PLoS Genet 1:e30

    Article  PubMed  Google Scholar 

  • Rashkova S, Karam SE, Kellum R, Pardue ML (2002a) Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159:397–402

    Article  PubMed  CAS  Google Scholar 

  • Rashkova S, Karam SE, Pardue ML (2002b) Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci USA 99:3621–3626

    Article  PubMed  CAS  Google Scholar 

  • Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, Depinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712

    Article  PubMed  CAS  Google Scholar 

  • Savitsky M, Kravchuk O, Melnikova L, Georgiev P (2002) Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster. Mol Cell Biol 22:3204–3218

    Article  PubMed  CAS  Google Scholar 

  • Siriaco GM, Cenci G, Haoudi A, Champion LE, Zhou C, Gatti M, Mason JM (2002) Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. Genetics 160:235–245

    PubMed  CAS  Google Scholar 

  • Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, de Lange T (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20:1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Török T, Harvie PD, Buratovich M, Bryant PJ (1997) The product of proliferation disrupter is concentrated at centromeres and required for mitotic chromosome condensation and cell proliferation in Drosophila. Genes Dev 11:213–225

    Article  PubMed  Google Scholar 

  • Tower J (1996) Aging mechanisms in fruit flies. BioEssays 18:799–807

    Article  PubMed  CAS  Google Scholar 

  • Vega LR, Mateyak MK, Zakian VA (2003) Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 4:948–959

    Article  PubMed  CAS  Google Scholar 

  • Walter MF, Biessmann H (2004) Expression of telomere retrotransposons, HeT-A and TART, in Drosophila melanogaster is correlated with cell proliferation. Dev Genes Evol 214:211–219

    Article  PubMed  CAS  Google Scholar 

  • Walter MF, Jang C, Kasravi B, Donath J, Mechler BM, Mason JM, Biessmann H (1995) DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 104:229–241

    PubMed  CAS  Google Scholar 

  • Wei C, Price M (2003) Protecting the terminus: t-loops and telomere end-binding proteins. Cell Mol Life Sci 60:2283–2294

    Article  PubMed  CAS  Google Scholar 

  • Wright WE, Shay JW (2000) Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med 6:849–851

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the US Public Health Service grant GM-56729 to H. B. by the Hungarian National Science Foundation OTKA no. T 037422 to T. T. and in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences. We thank Chris LePhong and Diana Le for excellent lab work and Matt Roper for valuable suggestions. C. B. was a participant in the AGEP Summer Research Program at UCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Biessmann.

Additional information

Communicated by S. Pimpinelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, M.F., Biessmann, M.R., Benitez, C. et al. Effects of telomere length in Drosophila melanogaster on life span, fecundity, and fertility. Chromosoma 116, 41–51 (2007). https://doi.org/10.1007/s00412-006-0081-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0081-5

Keywords

Navigation