Skip to main content
Log in

How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The duck-billed platypus is an extraordinary mammal. Its chromosome complement is no less extraordinary, for it includes a system in which ten sex chromosomes form an extensive meiotic chain in males. Such meiotic multiples are unprecedented in vertebrates but occur sporadically in plant and invertebrate species. In this paper, we review the evolution and formation of meiotic multiples in plants and invertebrates to try to gain insights into the origin of the platypus meiotic multiple. We describe the meiotic hurdles that translocated mammalian chromosomes face, which make longer chains disadvantageous in mammals, and we discuss how sex chromosomes and dosage compensation might have affected the evolution of sex-linked meiotic multiples. We conclude that the evolutionary conservation of the chain in monotremes, the structural properties of the translocated chromosomes and the highly accurate segregation at meiosis make the platypus system remarkably different from meiotic multiples in other species. We discuss alternative evolutionary models, which fall broadly into two categories: either the chain is the result of a sequence of translocation events from an ancestral pair of sex chromosomes (Model I) or the entire chain came into being at once by hybridization of two populations with different chromosomal rearrangements sharing monobrachial homology (Model II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ansari J, Takagi N, Sasaki M (1988) Morphological differentiation of sex-chromosomes in 3 species of ratite birds. Cytogenet Cell Genet 47:185–188

    Google Scholar 

  • Ashley T (2002) X-Autosome translocations, meiotic synapsis, chromosome evolution and speciation. Cytogenet Genome Res 96:33–39

    Article  PubMed  CAS  Google Scholar 

  • Ashley T (2005) Chromosome chains and platypus sex: kinky connections. Bioessays 27:681–684

    Article  PubMed  Google Scholar 

  • Barlow BA, Martin NJ (1984) Chromosome evolution and adaptation in mistletoes. In: Grant WF (ed) Plant biosystematics. Academic, Canada

    Google Scholar 

  • Bertolotto CEV, Rodrigues MT, Yonenaga-Yassuda Y (2001) Banding patterns, multiple sex chromosome system and localization of telomeric (TTAGGG)(n) sequences by FISH on two species of Polychrus (Squamata, Polychrotidae). Caryologia 54:217–226

    Google Scholar 

  • Bick Y (1992) The meiotic chain of chromosomes of monotremata. Royal Zoological Society of New South Wales, Sydney

    Google Scholar 

  • Bick Y, Sharman G (1975) The chromosomes of the platypus (Ornithorhynchus): Monotremata. Cytobios 14:17–28

    Google Scholar 

  • Bick YA, Murtagh C, Sharman GB (1973) The chromosomes of an egg-laying mammal Tachyglossus aculeatus (the echidna). Cytobios 7:233–243

    PubMed  CAS  Google Scholar 

  • Bigoni F, Koehler U, Stanyon R, Ishida T, Wienberg J (1997) Fluorescence in situ hybridization establishes homology between human and silvered leaf monkey chromosomes, reveals reciprocal translocations between chromosomes homologous to human Y/5, 1/9, and 6/16, and delineates an X1X2Y1Y2/X1X1X2X2 sex-chromosome system. Am J Phys Anthropol 102:315–327

    Article  PubMed  CAS  Google Scholar 

  • Bruere AN, Ellis PM (1979) Cytogenetics and reproduction of sheep with multiple centric fusions (Robertsonian translocations). J Reprod Fertil 57:363–375

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Janke A, Waddell PJ, Westerman M, Takenaka O, Murata S, Okada N, Paabo S, Hasegawa M (1998) Conflict among individual mitochondrial proteins in resolving the phylogeny of eutherian orders. J Mol Evol 47:307–322

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1980) Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genet Res 35:205–214

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Wall JD (1999) Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc R Soc Lond B Biol Sci 266:51–56

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  PubMed  CAS  Google Scholar 

  • Chinnappa CC, Victor R (1979) Achiasmate meiosis and complex heterozygosity in female cyclopoid copepods (Copepoda, Crustacea). Chromosoma 71:227–236

    Article  Google Scholar 

  • Cleland R (1972) Oenothera. Cytogenetics and evolution. Academic, London

    Google Scholar 

  • de Boer P (1976) Male meiotic behaviour and male and female litter size in mice with the T(2;9)26H and T(1;13)70H reciprocal translocations. Genet Res 27:369–378

    PubMed  CAS  Google Scholar 

  • de Boer P, de Jong JH (1989) Chromosome pairing and fertility in mice. In: Gillies CB (ed) Fertility and chromosome pairing: recent studies in plants and animals. CRC, Boca Raton, pp37–76

    Google Scholar 

  • de Oliveira EH, Neusser M, Figueiredo WB, Nagamachi C, Pieczarka JC, Sbalqueiro IJ, Wienberg J, Muller S (2002) The phylogeny of howler monkeys (Alouatta, Platyrrhini): reconstruction by multicolor cross-species chromosome painting. Chromosome Res 10:669–683

    Article  PubMed  Google Scholar 

  • Dennhöfer L (1975) Inherited preferential segregation in translocation heterozygotes of mosquito, Culex pipiens L. Theor Appl Genet 44:311–323

    Google Scholar 

  • Eicher EM (1970) X-autosome translocations in the mouse: total inactivation versus partial inactivation of the X chromosome. Adv Genet 15:175–259

    PubMed  CAS  Google Scholar 

  • Forejt J, Gregorova S (1977) Meiotic studies of translocations causing male sterility in the mouse: I. Autosomal reciprocal translocations. Cytogenet Cell Genet 19:159–179

    PubMed  CAS  Google Scholar 

  • Fredga K (1983) Aberrant sex chromosome mechanisms in mammals. Evolutionary aspects. Differentiation 23(Suppl):S23–S30

    PubMed  Google Scholar 

  • Fredga K (1988) Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females. Philos Trans R Soc Lond B Biol Sci 322:83–95

    Article  PubMed  CAS  Google Scholar 

  • Froenicke L, Anderson LK, Wienberg J, Ashley T (2002) Male mouse recombination maps for each autosome identified by chromosome painting. Am J Hum Genet 71:1353–1368

    Article  PubMed  CAS  Google Scholar 

  • Giagia-Athanasopoulou EB, Searle JB (2003) Chiasma localisation in male common shrews Sorex araneus, comparing Robertsonian trivalents and bivalents. Mammalia 67:295–299

    Article  Google Scholar 

  • Grützner F, Deakin J, Rens W, El-Mogharbel N, Marshall Graves JA (2003) The monotreme genome: a patchwork of reptile, mammal and unique features? Comp Biochem Physiol A Mol Integr Physiol 136:867–881

    Article  PubMed  CAS  Google Scholar 

  • Grützner F, Rens W, Tsend-Ayush E, El-Mogharbel N, O’Brien PC, Jones RC, Ferguson-Smith MA, Marshall Graves JA (2004) In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432:913–917

    Article  PubMed  CAS  Google Scholar 

  • Hancock AJ, Rowell DM (1995) A chromosomal hybrid zone in the Australian huntsman spider, Delena cancerides (Araneae, Sparassidae)—evidence for a hybrid zone near Canberra, Australia. Aust J Zool 43:173–180

    Article  Google Scholar 

  • Handel MA (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296:57–63

    Article  PubMed  CAS  Google Scholar 

  • Holsinger KE, Ellstrand NC (1984) The evolution and ecology of permanent translocation heterozygotes. Am Nat 124:48–71

    Article  Google Scholar 

  • Hossain MA, Curtis CF (1975) The effect of selection on the fertility of tranlsocation heterozygotes in the housefly. J Med Entomol 12:59–64

    PubMed  CAS  Google Scholar 

  • James SH (1965) Complex hybridity in Isotoma petraea. I. The occurrence of interchange heterozygosity, autogamy and a balanced lethal system. Heredity 20:341–353

    Google Scholar 

  • James SH, Wylie AP, Johnson MS, Carstairs SA, Simpson GA (1983) Complex hybridity in Isotoma petraea: V. Allozyme variation and the pursuit of hybridity. Heredity 51:653–663

    Google Scholar 

  • Johannisson R, Winking H (1994) Synaptonemal complexes of chains and rings in mice heterozygous for multiple Robertsonian translocations. Chromosome Res 2:137–145

    Article  PubMed  CAS  Google Scholar 

  • Kirsch JA, Mayer GC (1998) The platypus is not a rodent: DNA hybridization, amniote phylogeny and the palimpsest theory. Philos Trans R Soc Lond B Biol Sci 353:1221–1237

    Article  PubMed  CAS  Google Scholar 

  • Lacy RC (1980) The evolution of eusociality in termites: a haplodiploid analogy? Am Nat 116:449–451

    Article  Google Scholar 

  • Lawrence CW (1958) Genotypic control of chromosomal behaviour in rye: VI. Selection for disjunction frequency. Heredity 12:127–131

    Google Scholar 

  • Levy M, Levin DA (1975) Genic heterozygosity and variation in permanent translocation heterozygotes of the Oenothera biennis complex. Genetics 79:493–512

    PubMed  CAS  Google Scholar 

  • Levy M, Steiner EE, Levin DA (1975) Allozyme genetics in permanent translocation heterozygotes of the Oenothera biennis complex. Biochem Genet 13:487–500

    Article  PubMed  CAS  Google Scholar 

  • Lifschytz E, Lindsley DL (1972) The role of X-chromosome inactivation during spermatogenesis (Drosophila–allocycly–chromosome evolution–male sterility–dosage compensation). Proc Natl Acad Sci USA 69:182–186

    Article  PubMed  CAS  Google Scholar 

  • Lin YJ (1980) Chromosome behaviour in Rhoeo spathacea var. variegata. Cytobios 27:113–128

    PubMed  CAS  Google Scholar 

  • Luykx P (1987) Variation in the sex-linked interchange heterozygosity in the termite Incisitermes schwarzi Banks (Insecta: Isoptera) on the island of Jamaica. Genome 29:319–325

    Google Scholar 

  • Luykx P (1990) A cytogenetic survey of twenty-five species of lower termites from Australia. Genome 33:80–88

    Google Scholar 

  • Luykx P, Syren RM (1979) The cytogenetics of Incisitermes schwarzi and other Florida termites. Sociobiology 4:191

    Google Scholar 

  • Mercer SJ, Wallace BM, Searle JB (1992) Male common shrews (Sorex araneus) with long meiotic chain configurations can be fertile: implications for chromosomal models of speciation. Cytogenet Cell Genet 60:68–73

    PubMed  CAS  Google Scholar 

  • Miklos GL (1974) Sex-chromosome pairing and male fertility. Cytogenet Cell Genet 13:558–577

    PubMed  CAS  Google Scholar 

  • Mitchell MJ, Wilcox SA, Watson JM, Lerner JL, Woods DR, Scheffler J, Hearn JP, Bishop CE, Graves JA (1998) The origin anf loss of the ubiquitin activating enzyme gene on the mammalian Y chromosome. Hum Mol Genet, 7(3):429–434 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9467000&query_hl=3

    Article  PubMed  CAS  Google Scholar 

  • Monesi V (1965) Synthetic activities during spermatogenesis in the mouse. Exp Cell Res 39:197–224

    Article  PubMed  CAS  Google Scholar 

  • Monk M (1992) The X chromosome in development in mouse and man. J Inherit Metab Dis 15:499–513

    Article  PubMed  CAS  Google Scholar 

  • Mudry MD, Rahn M, Gorostiaga M, Hick A, Merani MS, Solari AJ (1998) Revised karyotype of Alouatta caraya (Primates: Platyrrhini) based on synaptonemal complex and banding analyses. Hereditas 128:9–16

    Article  PubMed  CAS  Google Scholar 

  • Mudry MD, Rahn IM, Solari AJ (2001) Meiosis and chromosome painting of sex chromosome systems in Ceboidea. Am J Primatol 54:65–78

    Article  PubMed  CAS  Google Scholar 

  • Murtagh C (1977) A unique cytogenetics system in monotremes. Chromosoma 65:37–57

    Article  Google Scholar 

  • Nanda I, Shan Z, Schartl M, Burt DW, Koehler M, Nothwang H, Grutzner F, Paton IR, Windsor D, Dunn I, Engel W, Staeheli P, Mizuno S, Haaf T, Schmid M (1999) 300 million years of conserved synteny between chicken Z and human chromosome 9. Nat Genet 21:258–259

    Article  PubMed  CAS  Google Scholar 

  • Narain Y, Fredga K (1997) Meiosis and fertility in common shrews, Sorex araneus, from a chromosomal hybrid zone in central Sweden. Cytogenet Cell Genet 78:253–259

    PubMed  CAS  Google Scholar 

  • Ogawa K (1954) Chromosome studies in the Myriapoda: VII. A chain association of the multiple sex-chromosomes found in Otocryops sexspinosus (Say). Cytologia 19:265–272

    Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex linked genes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pigozzi MI, Solari AJ (1997) Extreme axial equalization and wide distribution of recombination nodules in the primitive ZW pair of Rhea americana (Aves, Ratitae). Chromosome Res 5:421–428

    Article  PubMed  CAS  Google Scholar 

  • Qumsiyeh MB, Coate JL, Peppers JA, Kennedy PK, Kennedy ML (1997) Robertsonian chromosomal rearrangements in the short-tailed shrew, Blarina carolinensis, in western Tennessee. Cytogenet Cell Genet 76:153–158

    PubMed  CAS  Google Scholar 

  • Rahn MI, Mudry M, Merani MS, Solari AJ (1996) Meiotic behavior of the X1X2Y1Y2 quadrivalent of the primate Alouatta caraya. Chromosome Res 4:350–356

    Article  PubMed  CAS  Google Scholar 

  • Rahn MI, Solari AJ (1986) Recombination nodules in the oocytes of the chicken, Gallus domesticus. Cytogenet Cell Genet 43:187–193

    PubMed  CAS  Google Scholar 

  • Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarkower D (1999) Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol 215:208–220

    Article  PubMed  CAS  Google Scholar 

  • Renner O (1924) Die Schakung der Oenotherenbastarde. Botan Zentr 44:309–336

    Google Scholar 

  • Rens W, Grützner F, O’Brien P C, Fairclough H, Graves JA, Ferguson-Smith MA (2004) Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci USA 101:16257–16261

    Article  PubMed  CAS  Google Scholar 

  • Rickards GK (1983) Orientation behavior of chromosome multiples of interchange (reciprocal translocation) heterozygotes. Annu Rev Genet 17:443–498

    Article  PubMed  CAS  Google Scholar 

  • Roeder GS, Bailis JM (2000) The pachytene checkpoint. Trends Genet 16:395–403

    Article  PubMed  CAS  Google Scholar 

  • Ross MH, Cochran DG (1975) Two new reciprocal translocations in the German cockroach. Cytology and genetics of T(3;12) and T(7;12). J Hered 66:79–89

    PubMed  CAS  Google Scholar 

  • Rowell DM (1986) Complex sex-linked translocation heterozygosity and its role in the evolution of social behaviour. Can J Genet Cytol 28:168–170

    Google Scholar 

  • Rowell DM (1990) Fixed fusion heterozygosity in Delena cancerides Walck (Araneae: Sparassidae): an alternative to speciation by monobrachial fusion. Genetica 80:139–157

    Article  CAS  Google Scholar 

  • Rowell DM (1991) Chromosomal fusion and meiotic behaviour in Delena cancerides (Araneae: Sparassidae): II. Chiasma position and its implications for speciation. Genome 34:567–573

    Google Scholar 

  • Santos O, Luykx P (1985) Holozygosity for sex-linked genes in males of the termite Incisitermes schwarzi. Biochem Genet 23:729–740

    PubMed  CAS  Google Scholar 

  • Sarre SD, Georges A, Quinn A (2004) The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. Bioessays 26:639–645

    Article  PubMed  Google Scholar 

  • Schartl M (2004) Sex chromosome evolution in non-mammalian vertebrates. Curr Opin Genet Dev 14:634–641

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Steinlein C, Feichtinger W (1992) Chromosome banding in Amphibia: XVII. First demonstration of multiple sex chromosomes in amphibians: Eleutherodactylus maussi (Anura, Leptodactylidae). Chromosoma 101:284–292

    Article  PubMed  CAS  Google Scholar 

  • Shetty S, Griffin DK, Graves JA (1999) Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7:289–295

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (1974) The behavior of the XY pair in mammals. Int Rev Cytol 38:273–317

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ, Pigozzi MI (1994) Fine structure of the XY body in the XY1Y2 trivalent of the bat Artibeus lituratus. Chromosome Res 2:53–58

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ, Rahn MI (2005) Fine structure and meiotic behaviour of the male multiple sex chromosomes in the genus Alouatta. Cytogenet Genome Res 108:262–267

    Article  PubMed  CAS  Google Scholar 

  • Speed RM (1989) Heterologous pairing and fertility in humans. In: Gillies CB (ed) Fertility and chromosome pairing: recent studies in plants and animals. CRC, Boca Raton, pp1–36

    Google Scholar 

  • Stack SM, Soulliere DL (1984) The relation between synapsis and chiasma formation in Rhoeo spathacea. Chromosoma 90:72–83

    Article  Google Scholar 

  • Sun S, Rees H (1967) Genotypic control of chromosome behaviour in rye: IX. The effect of selection on the disjunction frequency of interchange associations. Heredity 22:249–254

    Google Scholar 

  • Syren RM, Luykx P (1977) Permanent segmental interchange complex in the termite Incisitermes schwarzi. Nature 266:167–168

    Article  PubMed  CAS  Google Scholar 

  • Syren RM, Luykx P (1981) Geographic variation of sex-linked translocation heterozygosity in the termite Kalotermes approximatus Snyder (Insecta: Isoptera). Chromosoma 82:65

    Article  Google Scholar 

  • Thomson JB (1956) Genotypic control of chromosome behaviour in rye: II. Disjunction at meiosis in interchange heterozygotes. Heredity 10:99–108

    Google Scholar 

  • Tucker PK (1986) Sex chromosome–autosome translocations in the leaf-nosed bats, family Phyllostomidae: I. Mitotic analyses of the subfamilies Stenodermatinae and Phyllostominae. Cytogenet Cell Genet 43:19–27

    PubMed  CAS  Google Scholar 

  • Tucker PK, Bickham JW (1986) Sex chromosome–autosome translocations in the leaf-nosed bats, family Phyllostomidae: II. Meiotic analyses of the subfamilies Stenodermatinae and Phyllostominae. Cytogenet Cell Genet 43:28–37

    PubMed  CAS  Google Scholar 

  • Turner JM (2005) Sex chromosomes make their mark. Chromosoma 114(4):300–306

    Article  PubMed  Google Scholar 

  • Turner JMA, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu XL, Deng CX, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47

    PubMed  CAS  Google Scholar 

  • Van Brink J (1959) L’ expression morphologique de la diagametie chez les sauropsids et les monotremes. Chromosoma 10:1–72

    Article  Google Scholar 

  • Vassart M, Seguela A, Hayes H (1995) Chromosomal evolution in gazelles. J Hered 86:216–227

    PubMed  CAS  Google Scholar 

  • Vincke PP, Tilquin JP (1977) A sex-linked quadrivalent in Termitidae (Isoptera). Chromosoma 67:151–156

    Article  Google Scholar 

  • Watson JM, Meyne J, Graves JAM (1992) Chromosomal composition and position in the echidna meiotic translocation chain. In: Augee M (ed) Platypus and echidnas. Royal Zoological Society of New South Wales, Sydney, Sydney, pp53–63

    Google Scholar 

  • Watson JM, Spencer JA, Riggs AD, Graves JA (1990) The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation. Proc Natl Acad Sci USA 87:7125–7129

    Article  PubMed  CAS  Google Scholar 

  • White MJD (1973) Animal cytology and evolution. Cambridge University Press, London

    Google Scholar 

  • Wiens D, Barlow BA (1973) Unusual translocation heterozygosity in an East African mistletoe, Viscum fischeri. Nature 243:93–94

    CAS  Google Scholar 

  • Wiens D, Barlow BA (1975) Permanent translocation heterozygosity and sex determination in East African mistletoes. Science 187:1208–1209

    Article  PubMed  CAS  Google Scholar 

  • Wiens D, Barlow BA (1979) Translocation heterozygosity and the origin of dioecy in Viscum. Heredity 42:201–222

    Google Scholar 

  • Woodburne MO, Rich TH, Springer MS (2003) The evolution of tribospheny and the antiquity of mammalian clades. Mol Phylogenet Evol 28:360–385

    Article  PubMed  CAS  Google Scholar 

  • Wrigley JM, Graves JAM (1988) Karyotypic conservation in the mammalian order Monotremata (subclass Prototheria). Chromosoma 96:231–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to W. Rens, P.C.M. O’Brien and M.A. Ferguson-Smith for generating and providing platypus whole chromosome paints and to W. Rens and two anonymous reviewers for helpful comments on the manuscript. F.G. and J.A.M.G. acknowledge funding from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Gruetzner.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruetzner, F., Ashley, T., Rowell, D.M. et al. How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals. Chromosoma 115, 75–88 (2006). https://doi.org/10.1007/s00412-005-0034-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0034-4

Keywords

Navigation