Skip to main content
Log in

Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosome segregation errors are a significant cause of aneuploidy among human neonates and often result from errors in female meiosis that occur during fetal life. For the latter reason, little is known about chromosome dynamics during female prophase I. Here, we analyzed chromosome reorganization, and centromere and telomere dynamics in meiosis in the human female by immunofluorescent staining of the SYCP3 and SYCP1 synaptonemal complex proteins and the course of recombinational DNA repair by IF of phospho-histone H2A.X (γ-H2AX), RPA and MLH1 recombination proteins. We found that SYCP3, but not SYCP1, aggregates appear in the preleptotene nucleus and some persist up to pachytene. Telomere clustering (bouquet stage) in oocytes lasted from late-leptotene to early pachytene—significantly longer than in the male. Leptotene and zygotene oocytes and spermatocytes showed strong γ-H2AX labeling, while γ-H2AX patches, which colocalized with RPA, were present on SYCP1-tagged pachytene SCs. This was rarely seen in the male and may suggest that synapsis installs faster with respect to progression of recombinational double-strand break repair or that the latter is slower in the female. It is speculated that the presence of γ-H2AX into pachytene highlights female-specific peculiarities of recombination, chromosome behavior and checkpoint control that may contribute to female susceptibility for aneuploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–i
Fig. 2a–h
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alani E, Thresher R, Griffith JD, Kolodner RD (1992) Characterization of DNA-binding and strand-exchange stimulation properties of v-RPA, a yeast single-strand-DNA-binding protein. J Mol Biol 227:54–71

    CAS  PubMed  Google Scholar 

  • Anderson LK, Reeves A, Webb LM, Ashley T (1999) Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151:1569–1579

    CAS  PubMed  Google Scholar 

  • Ashley T, Plug AW, Xu J, Solari AJ, Reddy G, Golub EI, Ward DC (1995) Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates. Chromosoma 104:19–28

    Article  CAS  PubMed  Google Scholar 

  • Baker TG (1963) A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci 158:417–433

    CAS  PubMed  Google Scholar 

  • Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13:336–342

    CAS  PubMed  Google Scholar 

  • Barlow AL, Hultén MA (1997) Combined immunocytogenetic and molecular cytogenetic analysis of meiosis I oocytes from normal human females. Zygote 6:27–38

    Google Scholar 

  • Barlow AL, Hultén MA (1998) Crossing over analysis at pachytene in man. Eur J Hum Genet 6:350–358

    Article  CAS  PubMed  Google Scholar 

  • Blat Y, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasmata formation. Cell 111:791–802

    Article  CAS  PubMed  Google Scholar 

  • Bojko M (1983) Human meiosis VIII. Chromosome pairing and formation of the synaptonemal complex in oocytes. Carlsberg Res Commun 48:457–483

    Google Scholar 

  • Cohen PE, Pollard JW (2001) Regulation of meiotic recombination and prophase I progression in mammals. Bioessays 23:996–1009

    Article  CAS  PubMed  Google Scholar 

  • Cooke HJ, Saunders PT (2002) Mouse models of male infertility. Nat Rev Genet 3:790–801

    Article  CAS  PubMed  Google Scholar 

  • Dietrich AJ, Kok E, Offenberg HH, Heyting C, de Boer P, Vink AC (1992) The sequential appearance of components of the synaptonemal complex during meiosis of the female rat. Genome 35:492–497

    CAS  PubMed  Google Scholar 

  • Dobson MJ, Pearlman RE, Karaiskakis A, Spyropoulos B, Moens PB (1994) Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J Cell Sci 107:2749–2760

    CAS  PubMed  Google Scholar 

  • Eijpe M, Heyting C, Gross B, Jessberger R (2000) Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113:673–682

    CAS  PubMed  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C (2003) Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SCM1β and SMC3. J Cell Biol 160:657–670

    Article  CAS  PubMed  Google Scholar 

  • Fawcett DW (1956) The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes. J Biophys Biochem Cytol 2:403

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo O, Liebe B, Scherthan H, Nussenzweig A (2003a) H2AX regulates meiotic telomere clustering. J Cell Biol 163:15–20

    Article  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko P, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003b) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    Article  CAS  PubMed  Google Scholar 

  • Franklin AE, McElver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ (1999) Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11:809–824

    Article  CAS  PubMed  Google Scholar 

  • Garcia M, Dietrich M, Freixa L, Vink ACG, Ponsa M, Egozcue J (1987) Development of the first meiotic prophase stages in human fetal oocytes observed by light microscopy. Hum Genet 77:223–232

    CAS  PubMed  Google Scholar 

  • Golubovskaya IN, Harper LC, Pawlowski WP, Schichnes D, Cande WZ (2002) The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics 162:1979–1993

    CAS  PubMed  Google Scholar 

  • Gasior SL, Wong AK, Kora Y, Shinohara A, Bishop DK (1998) Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Genes Dev 12:2208–2221

    CAS  PubMed  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Genet 2:280–291

    Article  CAS  Google Scholar 

  • Hodges CA, LeMaire-Adkins R, Hunt PA. (2001) Coordinating the segregation of sister chromatids during the first meiotic division: evidence for sexual dimorphism. J Cell Sci 114:2417–2426

    CAS  PubMed  Google Scholar 

  • Hunt PA, Hassold T (2002) Sex matters in meiosis. Science 296:2181–2183

    Article  CAS  PubMed  Google Scholar 

  • Hunter N, Valentin Borner G, Lichten M, Kleckner N (2001) Gamma-H2AX illuminates meiosis. Nat Genet 27:236–238

    Article  CAS  PubMed  Google Scholar 

  • Jessberger R (2002) The many functions of SMC proteins in chromosome dynamics. Nat Rev Mol Cell Biol 10:767–778

    Article  Google Scholar 

  • Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kaminker P, Campisi J (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23:405–412

    Article  CAS  PubMed  Google Scholar 

  • Kleckner N, Storlazzi A, Zickler D (2003) Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet 19:623–628

    Article  CAS  PubMed  Google Scholar 

  • Lammers JH, Offenberg HH, van Aalderen M, Vink AC, Dietrich AJ, Heyting C (1994) The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol Cell Biol 14:1137–1146

    CAS  PubMed  Google Scholar 

  • Libby BJ, Reinholdt LG, Schimenti J (2003) Positional cloning and characterization of Mei1, a vertebrate-specific gene required for normal meiotic chromosome synapsis in mice. Proc Natl Acad Sci USA 100:15706–15711

    Article  CAS  PubMed  Google Scholar 

  • Liebe B, Alsheimer M, Hoog C, Benavente R, Scherthan H (2004) Telomere attachment, meiotic chromosome condensation, pairing and bouquet stage duration are modified in spermatoctes lacking axial elements. Mol Biol Cell 15:827–837

    Article  CAS  PubMed  Google Scholar 

  • Lynn A, Koehler KE, Judis L, Chan ER, Cherry JP, Schwartz S, Seftel A, Hunt PA, Hassold TJ (2002) Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science 296:2222–2225

    Article  CAS  PubMed  Google Scholar 

  • MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM (2002) Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev 15,16:2428–2442

    Google Scholar 

  • Mahadevaiah SK, Turner JMA, Baudat F, Rogakou EP, de Boer P, Blanco-Rodríguez J, Jasin M, Keeny S, Bonner W, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276

    Article  CAS  PubMed  Google Scholar 

  • Marcon E, Moens P (2003) MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 165:2283–2287

    CAS  PubMed  Google Scholar 

  • Martínez-Flores I, Egozcue J, García M (2003) Synaptic process in rat (Rattus norvegicus): influence of the methodology on the results. Microsc Res Tech 60:450–457

    Article  PubMed  Google Scholar 

  • Meuwissen RL, Offenberg HH, Dietrich AJ, Riesewijk A, van Iersel M, Heyting C (1992) A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J 11:5091–5100

    CAS  PubMed  Google Scholar 

  • Moens PB, Freire R, Tarsounas M, Spyropoulos B, Jackson SP (2000) Expression and nuclear localization of BLM, a chromosome stability protein mutated in Bloom’s syndrome, suggest a role in recombination during meiotic prophase. J Cell Sci 113:663–672

    CAS  PubMed  Google Scholar 

  • Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (2001) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    Google Scholar 

  • Moses MJ (1956) Chromosomal structures in crayfish spermatocytes. J Biophys Biochem Cytol 2:215–218

    Article  CAS  PubMed  Google Scholar 

  • Offenberg HH, Schalk JAC, Meuwissen RLJ, van Aalderen M, Kester HA, Dietrich AJJ, Heyting C (1998) SYCP2: a major protein component of the axial elements of synaptonemal complexes of the rat. Nucleic Acids Res 26:2572–2579

    Article  CAS  PubMed  Google Scholar 

  • Padmore R, Cao L, Kleckner N (1991) Temporal comparision of recombination and synaptonemal complex formation during meiosis in S. cerevisae. Cell 66:1239–1256

    Article  CAS  PubMed  Google Scholar 

  • Page SL, Hawley RS (2003) Chromosome choreography: the meiotic ballet. Science 301:785–789

    Article  CAS  PubMed  Google Scholar 

  • Pandita TK, Westphal CH, Anger M, Sawant SG, Geard CR, Pandita RK, Scherthan H (1999) Atm inactivation results in aberrant telomere clustering during meiotic prophase. Mol Cell Biol 19:5096–5105

    CAS  PubMed  Google Scholar 

  • Pezzi N, Prieto I, Kremer L, Perez Jurado LA, Valero C, Del Mazo J, Martinez AC, Barbero JL (2000) STAG3, a novel gene encoding a protein involved in meiotic chromosome pairing and location of STAG3-related genes flanking the Williams-Beuren syndrome deletion. Faseb J 14:581–592

    CAS  PubMed  Google Scholar 

  • Pfeifer C, Thomsen PD, Scherthan H (2001) Centromere and telomere redistribution precedes homologue pairing and terminal synapsis initiation during prophase I of cattle spermatogenesis. Cytogenet Cell Genet 93:304–314

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer C, Scherthan H, Thomsen PD (2003) Sex-specific telomere redistribution and synapsis initiation in cattle oogenesis. Dev Biol 255:206–215

    Article  CAS  PubMed  Google Scholar 

  • Prieto I, Tease C, Pezzi N, Buesa JM, Ortega S, Kremer L, Martínez A, Martínez-A C, Hultén MA, Barbero JL (2004) Cohesin component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res 12:197–213

    Article  CAS  PubMed  Google Scholar 

  • Plug AW, Peters AH, Keegan KS, Hoekstra MF, de Boer P, Ashley T (1998) Changes in protein composition of meiotic nodules during mammalian meiosis. J Cell Sci 111:413–423

    CAS  PubMed  Google Scholar 

  • Rasmussen SW, Holm PB (1978) Human meiosis II. Chromosome pairing and recombination nodules in human spermatocytes. Carlberg Res Commun 43:275–327

    Google Scholar 

  • Robinson WP (1996) The extent, mechanism, and consequences of genetic variation, for recombination rate. Am J Hum Genet 59:1175–1183

    CAS  PubMed  Google Scholar 

  • Rockmill B, Fung JC, Branda SS, Roeder GS (2003) The Sgs1 helicase regulates chromosome synapsis and meiotic crossing over. Curr Biol 13:1954–1962

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner W (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner W (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–915

    Article  CAS  PubMed  Google Scholar 

  • Roig I, Vanrell I, Ortega A, Cabero L, Egozcue J, Garcia M (2003) The use of foetal ovarian stromal cell culture for cytogenetic diagnosis. Cytotechnology 41:45–49

    Article  CAS  Google Scholar 

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2:621–627

    Article  CAS  PubMed  Google Scholar 

  • Scherthan H (2003) Knockout mice provide novel insights into meiotic chromosome and telomere dynamics. Cytogenet Genome Res 103:235–244

    Article  CAS  PubMed  Google Scholar 

  • Scherthan H, Cremer T (1994) Methodology of non isotopic in situ-hybridization in embedded tissue sections. Methods Mol Genet 5:223–238

    CAS  Google Scholar 

  • Scherthan H, Schonborn I (2001) Asynchronous chromosome pairing in male meiosis of the rat (Rattus norvegicus). Chromosome Res 9:273–282

    Article  CAS  PubMed  Google Scholar 

  • Scherthan H, Weich S, Schwegler H, Heyting C, Harle M, Cremer T (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134:1109–1125

    Article  CAS  PubMed  Google Scholar 

  • Scherthan H, Eils R, Trelles-Sticken E, Dietzel S, Cremer T, Walt H, Jauch A (1998) Aspects of three-dimensional chromosome reorganization during the onset of human male meiotic prophase. J Cell Sci 111:2337–2351

    CAS  PubMed  Google Scholar 

  • Scherthan H, Jerratsch M, Li B, Smith S, Hulten M, Lock T, de Lange T (2000) Mammalian meiotic telomeres: protein composition and redistribution in relation to nuclear pores. Mol Biol Cell 11:4189–4203

    CAS  PubMed  Google Scholar 

  • Storlazzi A, Tessé S, Gargano S, James F, Kleckner N, Zickler D (2003) Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev 17:2675–2687

    Article  CAS  PubMed  Google Scholar 

  • Tarsounas M, Morita T, Pearlman RE, Moens PB (1999) RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J Cell Biol 147:207–220

    Article  CAS  PubMed  Google Scholar 

  • Tease C, Hartshorne GM, Hultén MA (2002) Patterns of meiotic recombination in human oocytes. Am J Hum Genet 70:1469–1479

    Article  CAS  PubMed  Google Scholar 

  • Terasawa M, Shinohara A, Hotta Y, Ogawa H, Ogawa T (1995) Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages. Genes Dev 9:925–934

    CAS  PubMed  Google Scholar 

  • Trelles-Sticken E, Loidl J, Scherthan H (1999) Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci 112:651–658

    CAS  PubMed  Google Scholar 

  • Trelles-Sticken E, Dresser ME, Scherthan H (2000) Meiotic telomere protein Ndj1p is required for meiosis-specific telomere distribution, bouquet formation and efficient homologue pairing. J Cell Biol 151:95–106

    Article  CAS  PubMed  Google Scholar 

  • Tsubouchi H, Roeder GS (2003) The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev Cell 5:915–925

    Article  CAS  PubMed  Google Scholar 

  • Tunquist BJ, Maller JL (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 17:683–710

    Article  CAS  PubMed  Google Scholar 

  • Walpita D, Plug AW, Neff NF, German J, Ashley T (1999) Bloom’s syndrome protein, BLM, colocalizes with replication protein A in meiotic prophase nuclei of mammalian spermatocytes. Proc Natl Acad Sci USA 96:5622–5627

    Article  CAS  PubMed  Google Scholar 

  • Weier HU, Kleine HD, Gray JW (1991) Labeling of the centromeric region on human chromosome 8 by in situ hybridization. Hum Genet 87:489–494

    CAS  PubMed  Google Scholar 

  • von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–413

    PubMed  Google Scholar 

  • Yuan L, Liu JG, Zaho J, Brundell E, Daneholt B, Höög C (2000) The murine SYCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Höög C (2002) Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SYCP3. Science 296:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Zickler D, Kleckner N (1998) The leptotene–zygotene transition of meiosis. Annu Rev Genet 32:619–697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. C. Heyting for kindly providing SYCP antibodies. This work was carried out with financial support from FIS 02/0297, Fundación Salud 2000-Ayudas Serono and SGR-00201. I.R. is the recipient of a grant (AP2000) from the Ministerio de Educación, Cultura y Deporte. We are grateful to unidentified reviewers for their stimulating comments on an earlier draft of this paper. H.S. thanks H.H. Ropers (MPI-MG, Berlin) and the DFG (Grant no. SCHE 350/8-4) for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Garcia or H. Scherthan.

Additional information

Communicated by E.A. Nigg

I. Roig and B. Liebe made an equal contribution to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roig, I., Liebe, B., Egozcue, J. et al. Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma 113, 22–33 (2004). https://doi.org/10.1007/s00412-004-0290-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0290-8

Keywords

Navigation